This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
The California Energy Commission has awarded $398,662 to the University of California, Davis to develop a forecasting tool that can be used by the state’s grid operator to respond to sudden changes in wind power production.
The Electric Power Research Institute, 8 automakers and 15 utilities are working to develop and to demonstrate an open platform that would integrate plug-in electric vehicles (PEVs) with smart grid technologies enabling utilities to support PEV charging regardless of location. Automakers and V2G. Earlier post.) Earlier post.). Earlier post.)
The US Department of Energy is awarding $620 million for projects around the country to demonstrate advanced Smart Grid technologies and integrated systems. Smart grid regional demonstrations involving plug-in vehicles include (ranked by DOE funding): Columbus Southern Power Company (doing business as AEP Ohio).
A study by researchers at Harvard University and Tsinghua University shows that there is enough wind in China to generate electricity to supply the nation's entire projected demand for 2030 (about twice what is used now) at reasonable prices per kilowatt-hour. Assuming a guaranteed price of 0.516 RMB (7.6 McElroy et al.
Urban Green Energy (UGE) and GE unveiled the first integrated wind-powered electric vehicle charging station. The Sanya Skypump pairs UGE’s 4 kW vertical wind turbine with GE’s Durastation electric vehicle (EV) charging technology (Level 2, 30A) in a single unit, with all required electrical systems located within the tower.
Yi Cui has developed nanoparticle copper hexacyanoferrate (CuHCF) battery cathode materials that demonstrate long cycle life and high power for use in grid storage applications. Short-term transients, including those related to wind and solar sources, present challenges to the electrical grid. A team at Stanford led by Prof.
ITM Power has been selected by the Homes and Communities Agency (HCA) as the preferred bidder in a recent competitive tender process to become the operator of a Hydrogen Mini Grid System (HMGS) in Rotherham, UK.
A team from Fraunhofer Institute for Industrial Engineering IAO, together with Daimler AG and the Institute for Human Factors and Technology Management at the University of Stuttgart, is developing both the charging infrastructure and the energy management systems required to manage large fleets of EVs in a project called charge@work.
In a new study published in the journal Applied Energy , Carnegie Mellon University (CMU) researchers found that controlled charging of plug-in hybrid electric vehicles (PHEVs) reduces the costs of integrating the vehicles into an electricity system by 54–73% depending on the scenario.
A plot of ESOI for 7 potential grid-scale energy storage technologies. Benson from Stanford University and Stanford’s Global Climate and Energy Project (GCEP) has quantified the energetic costs of 7 different grid-scale energy storage technologies over time. Credit: Barnhart and Benson, 2013. Click to enlarge.
Phil Ansell, an aerospace engineer at the University of Illinois Urbana-Champaign, modeled the life cycle carbon dioxide equivalent emissions of liquid hydrogen production required to meet the fuel needs of Chicago’s O’Hare International Airport (ORD) with today’s electric grid mix.
This latest round of ARPA-E projects seek to address the remaining challenges in energy storage technologies, which could revolutionize the way Americans store and use energy in electric vehicles, the grid and beyond, while also potentially improving the access to energy for the US. Utah State University. Pennsylvania State University.
The US Department of Energy is awarding more than $5 million to support US wind energy development. million to boost the speed and scale of midsize wind turbine technology development and deployment. million to boost the speed and scale of midsize wind turbine technology development and deployment.
in close collaboration with GTI and The University of Texas at Austin, has launched a US Department of Energy project, Demonstration and Framework for H2@Scale in Texas and Beyond. Frontier Energy, Inc., The project is supported by DOE’s Hydrogen and Fuel Cell Technologies Office within the Office of Energy Efficiency and Renewable Energy.
has signed a non-binding Memorandum of Understanding (MOU) with the Hawai’i Natural Energy Institute (HNEI) of the University of Hawai’i at Manoa and the Hawai’i Electric Light Company to supply a one-megawatt ALTI-ESS energy storage system for a test of wind energy integration. Altair Nanotechnologies, Inc.
A team from Stanford University led by Prof. Yi Cui has demonstrated a new type of safe, fast, inexpensive, long-life aqueous electrolyte battery targeted an grid-scale storage. Huggins & Yi Cui (2012) A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage. —Pasta et al. Resources.
AC Propulsion has delivered an AC Propulsion-powered eBox to the Technical University of Denmark (DTU), where it will be used to evaluate Vehicle to Grid (V2G) operation as part of a research program. With V2G, for example, a fleet of EVs plugged in to the grid could balance the variable ups and downs of power generated from the wind.
Balqon Corporation, a developer of heavy-duty electric vehicles, drive systems and lithium-ion battery storage devices, has installed a one MWh lithium-ion battery storage system at the University of California, Riverside (UCR); the system has gone operational, providing electric power to the Bourns College of Engineering building.
Xcel Energy has released the preliminary results from its wind-to-battery (W2B) storage project in Minnesota, and termed the technology successful. In October 2008, Xcel began testing a one-megawatt sodium-sulfur (NaS) battery ( earlier post ) to demonstrate its ability to store wind energy and move it to the electricity grid when needed.
Following a pilot program at University of California San Diego (UCSD), this second-life battery system has been unveiled at an operational EVgo fast charging station located in Union City, CA at 3960 Smith Street. high power electric vehicle charging (50kW+).
The consortium brings together a total of ten partners: EDF Deutschland, Holcim Deutschland, OGE, Ørsted Deutschland, Raffinerie Heide, Heide’s municipal utility, Thüga, and thyssenkrupp Industrial Solutions, along with the Region Heide development agency and the Westküste University of Applied Sciences.
The new ARPA-E selections focus on accelerating innovations in clean technology while increasing US competitiveness in rare earth alternatives and breakthroughs in biofuels, thermal storage, grid controls, and solar power electronics. University of Massachusetts, Amherst. University of Illinois. University. Description.
The environmental benefit of a large-scale deployment of plug-in hybrid electric vehicles (PHEVs) in the Canadian province of Alberta could vary significantly, ranging from a 40% to a 90% reduction in greenhouse gases, according to a study by electrical engineers at the University of Calgary’s Schulich School of Engineering. Mahdi Hajian.
The US Department of Energy announced $35 million in awards for 12 projects that find new ways to harness medium-voltage electricity for applications in industry, transportation, on the grid and beyond. BREAKERS projects include: Drexel University, Ultra-Efficient Intelligent MVDC Hybrid Circuit Breaker – $4,413,913.
Maintaining grid reliability amid increasing renewable energy penetration involves fundamental changes to power system operation and the resources leveraged to provide grid services. This consortium brings together leading experts to research how to enable inverter-based resources to help shape a reliable grid for today and tomorrow.
Energy Research Center at RWTH Aachen University, E.ON The project will be coordinated by RWTH Aachen University. The first phase of the project will focus on: Integration of renewable energy sources and testing of a decentralized supply of control power to stabilize grid operation; and. Batteries Power Generation Solar Wind'
Danish Minister for Transport Trine Bramsen, Aalborg municipal government representatives, and European media were invited to witness the first test runs of Geely methanol vehicles on Danish roads and visit the e-methanol production facility at Aalborg University.
The states account for 35% of US-installed wind capacity and while the region only produces about 4% of the nation’s solar energy, a number of pending large solar farms and community solar projects will greatly increase the region’s solar generating capacity.
The US Department of Energy (DOE) Advanced Research Projects Agency-Energy (ARPA-E) will make up to $130 million available to develop five new program areas including biofuels, thermal storage, rare earth alternatives, grid controls, and solar power electronics. Related Funding Opportunity Announcements here.).
The US Department of Energy delivered more than $47 million in funding under the American Recovery and Reinvestment Act for eight projects to further smart grid demonstration projects in seven states. The $47 million in new Recovery Act awards will support existing projects that are advancing demonstration-scale smart grid technologies.
has been awarded a firm contract with the Hawai’i Natural Energy Institute (HNEI) of the University of Hawai’i at Manoa to supply a one-megawatt ALTI-ESS energy storage system for a test of wind energy integration. Altair Nanotechnologies, Inc. Earlier post.).
Hydrokinetic energy is an abundant renewable resource that can boost grid resiliency and reduce infrastructure vulnerability, but it is currently a cost prohibitive option compared to other energy generating sources. The University of Michigan. The turbine will be designed for power delivery to remote and local grids.
The major driver for the project is the need to decarbonize the electrical grid, protect it from cybersecurity attacks and make it more resilient. We will be replicating the entire California power grid on one campus. Solar panel output depends on the weather, for example, as do wind turbines.
After a year in construction, Energiepark Mainz, a collaboration between Stadtwerke Mainz, Linde, Siemens and the RheinMain University of Applied Sciences, was inaugurated in Mainz. The energy park will produce hydrogen using electricity from neighboring wind parks. Earlier post.)
The EDISON effort (Electric Vehicles in a Distributed and Integrated Market using Sustainable Energy and Open Networks) consists of IBM, Denmark’s largest energy company DONG Energy, the regional energy company of Oestkraft, Technical University of Denmark, Siemens, Eurisco and the Danish Energy Association.
A new battery storage solution for offshore wind energy will be piloted in the world’s first floating wind farm, the Hywind pilot park off the coast of Peterhead in Aberdeenshire, Scotland. Hywind Scotland, located 25 km offshore Peterhead, will consist of five floating wind turbines.
According to Rystad Energy research, Spain, France, and Germany are among the countries committed or considering cross border pipelines to facilitate energy flows, while the UK with its extensive gas grid finds itself in a strong position to switch from natural gas to hydrogen. Repurposing natural gas pipelines.
Researchers from the US Department of Energy’s (DOE) SLAC National Accelerator Laboratory and Stanford University have designed a new lithium/polysulfide (Li/PS) semi-liquid (flow) battery for large-scale energy storage, with lithium polysulfide (Li 2 S 8 ) in ether solvent as a catholyte and metallic lithium as an anode. Click to enlarge.
Mitsubishi Motors Corporation (MMC) has launched a Vehicle-to-Grid (V2G) pilot, with the first charge point already being utilized with Mitsubishi Outlander PHEV’s in-vehicle storage batteries. University of Delaware Professor Willett Kempton, the pioneer of the grid-integrated vehicle concept, is Nuvve’s CTO.). Earlier post.).
Germany’s Minister of Economics and Technology, Sigmar Gabriel, together with representatives of power utility Stadtwerke Mainz AG, Siemens AG, The Linde Group and RheinMain University of Applied Sciences, inaugurated the construction of the Energiepark Mainz. This makes it possible to store electricity from renewable energy sources.
Two of the awardees, Halotechnics and the University of California Los Angeles (UCLA), also received funds from the Advanced Research Projects Agency – Energy (ARPA-E). 1 million to use high-fidelity solar forecasting to predict load impacts on California’s electricity grid and reduce solar integration costs.
Charging and energy are becoming a core business for Volkswagen; the company is building a universal and seamless eco-system for charging its electric models. This means, for example, that wind turbines won’t need to be shut down because there isn’t anyone using them. models and soon also with the technology of bidirectional charging.
Toshiba Corporation will supply the battery for the United Kingdom’s first 2MW scale lithium-titanate battery based Energy Storage System (ESS) to support grid management. The ESS will be connected to the 11kV grid at Western Power Distribution’s Willenhall primary substation, near Wolverhampton in the West Midlands.
The research project has the goal of integrating electrical vehicles as mobile energy storage units in the future intelligent power grid (smart grid). The demonstration will also explore the vehicle-to-grid (V2G) capability of the car via the bi-directional charging system when the car is not in use and the driver permits it.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content