This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Researchers at Monash University in Australia have conducted a lifecycle analysis and net energy analysis (LCA/NEA) of a hypothetical large-scale solar-electrolysis plant for the production of green hydrogen. of hydrogen is currently produced via water electrolysis and only a fraction of this production is powered by renewable energy.
Perovskite materials may hold the potential to play an important role in a process to produce hydrogen in a renewable manner, according to an analysis from scientists at the National Renewable Energy Laboratory (NREL). Electrolysis needs electricity to split water into hydrogen and oxygen. Illustration by Patrick Davenport, NREL.
Researchers from Japan’s NIMS (National Institute for Materials Science), the University of Tokyo and Hiroshima University have jointly conducted a techno-economic analysis for hydrogen production from photovoltaic power generation (PV) utilizing a battery-assisted electrolyzer. This approximately converts to US$1.92 to US$3.00/kg
the developer of a technology to produce renewable hydrogen using sunlight and water ( earlier post ), is working with Suzhou GH New Energy Co. a division of GCL Poly, in China to make the final modifications to the solar cells required to manufacture the Gen 1 hydrogen production panels to be used in demonstration pilot plants.
Heliogen and Bloom Energy have successfully demonstrated the production of green hydrogen by integrating the companies’ technologies: Heliogen’s concentrated solar energy system and the Bloom Electrolyzer. Electricity accounts for nearly 80% of the cost of hydrogen from electrolysis. Source: Heliogen.
EODev—along with its partners—is positioning itself as a leading European designer, assembler and distributor zero-emission energy systems on an industrial scale. Both companies worked together to develop hydrogen products around the Toyota modular fuel cell system. Earlier post.)
Africa can produce 50 million tons of green hydrogen a year by 2035, according to a new study by the European Investment Bank (EIB), International Solar Alliance and the African Union, with the support of the Government of Mauritania, HyDeal and UCLG Africa. This is equivalent to energy costs of US$60 a barrel.
Bioscience engineers at KU Leuven have created a solar panel that produces hydrogen gas from moisture in the air. Twenty of these solar panels could provide electricity and heat for one family for an entire winter. A traditional solar panel converts between 18 to 20% of the solar energy into electricity.
The Sparc Green Hydrogen process combines concentrated solar (CS) with photocatalytic water splitting. The company’s key development allows for reduced photocatalyst use and integration with existing concentrated solar systems. The facility is home to Australia’s largest solar thermal research hub.
This award marks the first Advanced Class Gas Turbines in the industry specifically designed and purchased as part of a comprehensive plan to sequentially transition from coal, to natural gas and finally to renewable hydrogen fuel, and creates a roadmap for the global industry to follow. MHPS gas turbines have more than 3.5
The project is supported by DOE’s Hydrogen and Fuel Cell Technologies Office within the Office of Energy Efficiency and Renewable Energy. The project partners will generate zero-carbon hydrogen onsite via electrolysis with solar and wind power and reformation of renewable natural gas from a Texas landfill.
Hydrogen produced with renewable electricity could compete on costs with fossil fuel alternatives by 2030, according to a new report from the International Renewable Energy Agency (IRENA). A combination of falling costs for solar and wind power, improved performance as well as economies of scale for electrolyzers could make it possible.
Toyota Motor and its subsidiary, Woven Planet Holdings have developed a working prototype of its portable hydrogen cartridge. This cartridge design will facilitate the everyday transport and supply of hydrogen energy to power a broad range of daily life applications in and outside of the home.
Then he and Andr Borschberg, a Swiss entrepreneur and pilot, were first to fly around the world, in stages, in a solar airplane called Solar Impulse. Now hes in the midst of what looks like his most technologically ambitious mission yet: to fly around the planet in a green-hydrogen fuel-cell aircraft.
Researchers in Europe led by a team from ETH Zurich have designed a fuel production system that uses water, CO 2 , and sunlight to produce aviation fuel. We are the first to demonstrate the entire thermochemical process chain from water and CO 2 to kerosene in a fully-integrated solar tower system. Zoller et al. —Aldo Steinfeld.
The Dutch Institute for Fundamental Energy Research ( DIFFER ) is partnering with Toyota Motor Europe (TME) to develop a device that absorbs water vapor, and splits it into hydrogen and oxygen directly using solar energy. In this project, DIFFER and TME are exploring an innovative way to produce hydrogen directly out of humid air.
Total and Engie signed a cooperation agreement to design, develop, build and operate the Masshylia project, France’s largest renewable hydrogen production site at Châteauneuf-les-Martigues in the Provence-Alpes-Côte d’Azur South region.
TECO 2030 ( earlier post ) is aiming to establish Norway’s first large-scale production of fuel cells, optimized to be the heart of hydrogen-powered ships and other heavy-duty installations. This will be the first volume production of fuel cells in Norway and a hub for the Norwegian hydrogen industry. gigawatt, per year.
Researchers at the University of Southampton have transformed optical fibers into photocatalytic microreactors that convert water into hydrogen fuel using solar energy. The microstructured optical fiber canes (MOFCs) with photocatalyst generate hydrogen that could power a wide range of sustainable applications. Potter, Daniel J.
Anglo American plc unveiled a prototype of the world’s largest hydrogen-powered mine haul truck designed to operate in everyday mining conditions at its Mogalakwena PGMs (platinum group metals) mine in South Africa. The hydrogen economy provides an opportunity to create new engines of economic activity.
The mesh with BiVO 4 nanowire photoanode for water oxidation and Rh-SrTiO 3 nanowire photocathode for water reduction produces hydrogen gas without an electron mediator. an “artificial leaf” to produce hydrogen—based on a nanowire mesh that lends itself to large-scale, low-cost production. hydrogen evolution rate and (?)
The SOLETAIR project ( earlier post ) has produced its first 200 liters of synthetic fuel from solar energy and the air’s carbon dioxide via Fischer-Tropsch synthesis. The mobile chemical pilot plant produces gasoline, diesel, and kerosene from regenerative hydrogen and carbon dioxide. The SOLETAIR project started in 2016.
After 12 years developing hydrogen propulsion systems for small unmanned aircraft ( earlier post ), HES Energy Systems is unveiled its plans for Element One, the first regional hydrogen-electric passenger aircraft. Element One’s design paves the way for renewable hydrogen as a long-range fuel for electric aviation.
Researchers from the US and Denmark have engineered a bio-inspired molybdenum sulfide catalyst as an inexpensive, abundant alternative to platinum and coupled it with a light-absorbing electrode to create a photo-electrochemical water splitting device to make hydrogen fuel from sunlight and water. —Hou et al.
Partners from Germany and Finland in the SOLETAIR project are building a compact pilot plant for the production of gasoline, diesel and kerosene from solar energy, regenerative hydrogen and carbon dioxide. The plant will be compact enough to fit into a shipping container. The plant consists of three components.
Starfire Energy, a Colorado-based developer of modular chemical plants for the carbon-free production of ammonia and hydrogen, has closed a major funding round. Ammonia offers an energy density comparable to fossil fuels and significantly higher than Li-ion batteries and compressed or liquid hydrogen.
Cepsa—the Spain-based multinational oil and gas company—will invest more than €3 billion to establish the Andalusian Green Hydrogen Valley, creating the largest green hydrogen hub in Europe in southern Spain. The company will build two plants with a total capacity of 2 GW to produce green hydrogen.
A new study by Berkeley Lab researchers at the Joint Center for Artificial Photosynthesis ( JCAP ) shows that nearly 90% of the electrons generated by a new hybrid photocathode material designed to store solar energy in hydrogen are being stored in the target hydrogen molecules (Faradaic efficiency). Earlier post.)
The California Energy Commission gave final approval for nearly $50 million in grant awards for hydrogen refueling and electric charging construction projects recommended for funding in notices of proposed awards published in April and May. million hydrogen, battery electric, and plug-in electric vehicles on the roadway by 2025.
Honda held a press briefing in Tokyo on its hydrogen business initiatives. Honda said that it will take a proactive approach to increase the use of hydrogen as an energy carrier and strive to expand its hydrogen business, in addition to continuing to electrify its products.
Researchers from the Karlsruhe Institute of Technology (KIT) and their Canadian partners have designed a low-cost photoreactor design for solar-driven synthesis. Until now, however, the technology has mainly been found in the laboratory because the costs of producing solarhydrogen were simply too high. Kant et al.
Researchers at the University of Twente’s MESA+ research institute have made significant efficiency improvements to the technology used to generate solar fuels. Researchers around the world are working on the development of solar fuel technology. This involves generating sustainable fuels using only sunlight, CO 2 and water.
Energy company SGH2 is bringing the world’s biggest green hydrogen production facility to Lancaster, California. As the gases exit the catalyst-bed chamber, the molecules bind into a very high quality hydrogen-rich biosyngas free of tar, soot and heavy metals. This is game-changing technology. —Lancaster Mayor R. Rex Parris.
Called the Woven City , it will be a fully connected ecosystem powered by hydrogen fuel cells. For the design of Woven City, Toyota has commissioned Danish architect, Bjarke Ingels, CEO, Bjarke Ingels Group (BIG). At CES, Toyota revealed plans to build a prototype “city” of the future on a 175-acre (0.71 km 2 ) site at the base of Mt.
SoCalGas) introduced an innovative new solar-powered hydrogen generation system during the California Air Resources Board Technology Expo and Symposium at the University of California, Riverside. STARS converts a record-setting 70% of solar energy into chemical energy. Southern California Gas Co. Earlier post.).
million to projects to develop hydrogen refueling infrastructure in California ( PON-13-607 ). All projects funded under this solicitation must support the future deployment of FCVs and hydrogen internal combustion engine vehicles (HICEVs). 100% Renewable Hydrogen Refueling Station Competition. Mobile Refueler Competition.
Researchers in Israel have designed a separate-cell photoelectrochemical (PEC) water-splitting system with decoupled hydrogen and oxygen cells for centralized hydrogen production. It addresses the challenges of designing, building, and optimizing the device for assessing large-scale hydrogen generation.
The US Department of Energy (DOE) will award $20 million to ten new research and development projects that will advance hydrogen production and delivery technologies: six on hydrogen production and four on hydrogen delivery. million to develop a reactor for hydrogen production from bio-derived liquids.
A research team has developed a new artificial photosynthesis device component with remarkable stability and longevity as it selectively converts sunlight and carbon dioxide into two promising sources of renewable fuels: ethylene and hydrogen. The device produced ethylene and hydrogen with unprecedented selectivity and for more than 24 hours.
The demonstration project, comprising 15 HEVO-Solar units and associated balance-of-plant equipment, will produce 15 tons of green hydrogen per year and avoid the emission of 135 tons of CO 2 annually. HEVO is Fusion Fuel’s proprietary miniaturized PEM electrolyzer, designed to be small, lightweight, and mass-producible.
A University of Colorado Boulder team has developed a new solar-thermal water-splitting (STWS) system for the efficient production of hydrogen. STWS cycles have long been recognized as a desirable means of generating hydrogen gas (H 2 ) from water and sunlight, the team notes. —Charles Musgrave.
Toshiba Corporation and Kawasaki City will conduct a cooperative demonstration experiment of an independent energy supply system utilizing solar power and hydrogen. Hydrogen electrical power storage capacity is 350 kWh. Hydrogen electrical power storage capacity is 350 kWh. Click to enlarge.
Rio Tinto has partnered with the Australian Renewable Energy Agency (ARENA) to study whether hydrogen can replace natural gas in alumina refineries to reduce emissions. In a 2017 open-access paper exploring the use of concentrated solar thermal (CST) radiation for alumina calcination, Davis et al. Rio Tinto will conduct a $1.2-million
Aiken County and Savannah River Nuclear Solutions, LLC, (SRNS) have reached agreement on a corporately funded $3-million expansion plan that will add an additional 6,435 square feet of finished laboratory and support space to the county-owned Center for Hydrogen Research (CHR) facility, located in Aiken County’s Savannah River.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content