Remove Convert Remove Cost Remove Production Remove Water
article thumbnail

Stanford researchers make ammonia from air and water microdroplets

Green Car Congress

Stanford researchers, with a colleague from King Fahd University of Petroleum and Minerals, have developed a simple and environmentally sound way to make ammonia with tiny droplets of water and nitrogen from the air. Water microdroplets are the hydrogen source for N 2 in contact with Fe 3 O 4. The conversion rate reaches 32.9 ± 1.38

Water 459
article thumbnail

PNNL team develops new low-cost method to convert captured CO2 to methane

Green Car Congress

Researchers at the Department of Energy’s Pacific Northwest National Laboratory have developed a new method to convert captured CO 2 into methane, the primary component of natural gas. Different methods for converting CO 2 into methane have long been known. Using EEMPA instead reduces the energy needed to fuel such a reaction.

Low Cost 315
article thumbnail

DOE awards $22.1M to 10 nuclear technology projects including clean hydrogen production

Green Car Congress

million to 10 industry-led projects to advance nuclear technologies, including two aimed at expanding clean hydrogen production with nuclear energy. A well-established downstream syngas-to-synfuel conversion process, such as Fischer-Tropsch synthesis, converts the syngas to liquid synfuel for a total projected cost of less than $4/gallon.

Hydrogen 475
article thumbnail

Study finds direct seawater splitting has substantial drawbacks to conventional water splitting, offers almost no advantage

Green Car Congress

A study by a team of researchers from Technische Universität Berlin (TUB) and Fritz-Haber-Institut der Max-Planck-Gesellschaft has found that direct seawater splitting for hydrogen production has substantial drawbacks compared to conventional water splitting and offers almost no advantage. Diess et al.

Water 497
article thumbnail

thyssenkrupp’s water electrolysis technology qualified as primary control reserve in Germany; hydrogen production for the electricity market

Green Car Congress

thyssenkrupp’s proprietary water electrolysis technology for the production of. Our plants are thus making a significant contribution to ensuring both a stable power supply and the cost-effectiveness of green hydrogen. In the following year the production of ammonia succeeded. thyssenkrupp and E.ON thyssenkrupp and E.ON

Water 337
article thumbnail

Cambridge researchers develop standalone device that makes formic acid from sunlight, CO2 and water

Green Car Congress

Researchers at the University of Cambridge, with colleagues at the University of Tokyo, have developed a standalone device that converts sunlight, carbon dioxide and water into formic acid, a carbon-neutral fuel, without requiring any additional components or electricity. —senior author Professor Erwin Reisner.

Water 418
article thumbnail

EU project HyFlexFuel converted sewage sludge and other biomasses into kerosene by hydrothermal liquefaction (HTL); SAF

Green Car Congress

The production of HTL fuels from three different feedstock classes shows the flexibility of the process. HTL has several key-advantages, of which the most important are: Flexible production potential: The HTL conversion technology taps into a huge global bio-resource with local variety of primary biomasses.

Convert 418