Remove Concept Remove Hydrogen Remove Low Cost Remove Water
article thumbnail

Rice U team creates low-cost, high-efficiency integrated device for solar-driven water splitting; solar leaf

Green Car Congress

Rice University researchers have created an efficient, low-cost device that splits water to produce hydrogen fuel. The current flows to the catalysts that turn water into hydrogen and oxygen, with a sunlight-to-hydrogen efficiency as high as 6.7%. The concept is broadly similar to an artificial leaf.

Low Cost 243
article thumbnail

New low-cost and high-performance multinary intermetallic compound as active electrocatalyst for hydrogen production

Green Car Congress

A team comprising scientists who specialize in structure materials at City University of Hong Kong (CityU) has developed a high-performance electrocatalyst based on an innovative concept originally for developing alloys. Their high costs and scarcity hinder the development and applications of this hydrogen production method.

Low Cost 221
article thumbnail

Researchers in Australia develop low-cost water-splitting catalyst that offers comparable performance to platinum

Green Car Congress

A team of researchers in Australia has developed a Janus nanoparticle catalyst with a nickel–iron oxide interface and multi-site functionality for a highly efficient hydrogen evolution reaction with a comparable performance to the benchmark platinum on carbon catalyst. Janus particles feature surfaces with two or more distinct properties.)

Water 243
article thumbnail

HyperSolar reaches 1.25 V for water-splitting with its self-contained low-cost photoelectrochemical nanosystem

Green Car Congress

volts (V) of water-splitting voltage with its novel low-cost electrolysis technology. The theoretical minimum voltage needed to split water molecules into hydrogen and oxygen is 1.23 V or more is generally needed because of the low reaction kinetics. Nanosystem for water electrolysis. HyperSolar, Inc.

Low Cost 246
article thumbnail

Evonik develops novel anion exchange membrane for electrolytic production of hydrogen; CHANNEL project

Green Car Congress

Evonik has now developed a novel anion exchange membrane (AEM), which should contribute to the breakthrough of electrolytic production of hydrogen. Therefore, new material breakthroughs and design concepts are needed before AEM technology can challenge PEM electrolyzers. Therefore, far less expensive materials can be used.

Hydrogen 433
article thumbnail

DOE to award $33M to advance hydrogen and fuel cell R&D and the H2@Scale vision

Green Car Congress

The US Department of Energy (DOE) announced $33 million in funding to support innovative hydrogen and fuel cell research & development (R&D), infrastructure supply chain development and validation, and cost analysis activities. ( Efficient and innovative hydrogen production. This would be coordinated with the H2NEW consortium.

Hydrogen 321
article thumbnail

UK awards £28M for 5 demonstration-phase low-carbon hydrogen production projects

Green Car Congress

million) to five demonstration phase projects for low-carbon hydrogen production. The hydrogen projects receiving funding are: Dolphyn. The project concerns the production of hydrogen at scale from offshore floating wind in deep water locations. HyNet – low carbon hydrogen plant. Contract value: £7.5

Hydrogen 386