Remove Commercial Remove Cost Of Remove Solar Remove Water
article thumbnail

Sparc Hydrogen to test photocatalytic water splitting (PWS) reactor at CSIRO

Green Car Congress

The Sparc Green Hydrogen process combines concentrated solar (CS) with photocatalytic water splitting. The company’s key development allows for reduced photocatalyst use and integration with existing concentrated solar systems. The facility is home to Australia’s largest solar thermal research hub.

Water 396
article thumbnail

NREL scientists advance solar thermochemical hydrogen (STCH) production

Green Car Congress

Key to the successful use of hydrogen as a fuel is being able to meet the Department of Energy’s Hydrogen Energy Earthshot—a recently announced goal to cut the cost of clean hydrogen by 80% to $1 per kilogram in a decade. Electrolysis needs electricity to split water into hydrogen and oxygen. Illustration by Patrick Davenport, NREL.

Solar 370
article thumbnail

Heliogen and Bloom Energy demonstrate production of low-cost green hydrogen; concentrated solar and high-temp electrolysis

Green Car Congress

Heliogen and Bloom Energy have successfully demonstrated the production of green hydrogen by integrating the companies’ technologies: Heliogen’s concentrated solar energy system and the Bloom Electrolyzer. Electricity accounts for nearly 80% of the cost of hydrogen from electrolysis. Source: Heliogen. Source: Heliogen.

Low Cost 397
article thumbnail

Study confirms €1T green hydrogen potential for Africa

Green Car Congress

Africa can produce 50 million tons of green hydrogen a year by 2035, according to a new study by the European Investment Bank (EIB), International Solar Alliance and the African Union, with the support of the Government of Mauritania, HyDeal and UCLG Africa. This is equivalent to energy costs of US$60 a barrel.

Africa 481
article thumbnail

University of Houston team demonstrates new efficient solar water-splitting catalyst for hydrogen production

Green Car Congress

Researchers from the University of Houston (UH) have developed a cobalt(II) oxide (CoO) nanocrystalline catalyst that can carry out overall water splitting with a solar-to-hydrogen efficiency of around 5%. The generation of hydrogen from water using sunlight could potentially form the basis of a clean and renewable source of energy.

Houston 268
article thumbnail

Researchers from MIT and Sun Catalytix develop an artificial leaf for solar water splitting to produce hydrogen and oxygen

Green Car Congress

The traces are for solar cells of 7.7% Researchers led by MIT professor Daniel Nocera have produced an “artificial leaf”—a solar water-splitting cell producing hydrogen and oxygen that operates in near-neutral pH conditions, both with and without connecting wires. solar-to-fuels systems. illumination.

MIT 278
article thumbnail

New photoelectrode with enhanced visible light absorption for improved solar water-splitting for hydrogen production

Green Car Congress

A team of researchers at Ulsan National Institute of Science and Technology (UNIST), Korea University, and the Korea Advanced Institute of Science and Technology (KAIST) has developed a new type of multilayered (Au NPs/TiO 2 /Au) photoelectrode that could boost the ability of solar water-splitting to produce hydrogen.

Water 150