Remove CO2 Remove Conversion Remove Gas-Electric Remove Solar
article thumbnail

Lufthansa, ETH Zürich, Climeworks & Synhelion to cooperate on Sustainable Aviation Fuels; CO2 capture & solar thermochemical conversion

Green Car Congress

The researchers and engineers at ETH Zurich have developed innovative processes that make it possible to extract CO 2 from the atmosphere and, together with water and with the help of concentrated sunlight, convert it into a synthesis gas that can be used to produce jet fuel.

Solar 269
article thumbnail

WUSTL researchers demonstrate solar-panel-powered microbial electrosynthesis to produce n-butanol from light, CO2 and power

Green Car Congress

A team of biologists and engineers modified Rhodopseudomonas palustris TIE-1 (TIE-1) so that it can produce a biofuel using only three renewable and naturally abundant source ingredients: carbon dioxide, solar panel-generated electricity and light. We hope that it can be a steppingstone for future sustainable solar fuel production.

Solar 319
article thumbnail

Evonik and Siemens Energy commission pilot plant for conversion of CO2 to chemicals

Green Car Congress

The necessary energy is supplied by electricity from renewable sources. Just as plants use solar energy to produce sugar, for example, from carbon dioxide (CO 2 ) and water in several steps, artificial photosynthesis uses renewable energies to produce valuable chemicals from CO 2 and water through electrolysis with the help of bacteria.

article thumbnail

Molten carbonate electrolysis can produce a range of carbon nanomaterials, including graphene, from CO2 at high yield

Green Car Congress

In the Solar Thermal Electrochemical Process (STEP), developed by Professor Stuart Licht and his group at GWU, solar UV–visible energy is focused on a photovoltaic device that generates the electricity to drive the electrolysis, while concurrently the solar thermal energy is focused on a second system to generate heat for the electrolysis cell.

Carbon 376
article thumbnail

New highly efficient catalyst for photoelectrochemical CO2 reduction toward methane

Green Car Congress

The work, presented in a paper in Proceedings of the National Academy of Sciences (PNAS), offers a unique, highly efficient, and inexpensive route for solar fuels synthesis. The solar-powered catalyst is made from abundant materials and works in a configuration that could be mass-produced. 1 under air mass 1.5 —Zhou et al.

CO2 349
article thumbnail

Sandia team puts power into local grid with supercritical CO2 closed-loop Brayton-cycle turbine

Green Car Congress

Sandia National Laboratories researchers recently delivered electricity produced by a new power-generating system to the Sandia-Kirtland Air Force Base electrical grid. The system uses heated supercritical carbon dioxide instead of steam to generate electricity and is based on a closed-loop Brayton cycle.

Grid 396
article thumbnail

2019 Keeling Curve Prize winners include Opus 12; conversion of CO2 into fuels and chemicals

Green Car Congress

water and electricity to produce higher-energy carbon-based products and a co-product of pure oxygen. This reaction is energetically uphill, so electricity must be added to drive the reaction forward, and it is not possible without a new family of CO?-reducing reducing catalysts. Clean Energy Works (Washington, D.C.)

2019 207