Remove Carbon Remove Convert Remove Design Remove MIT
article thumbnail

MIT researchers propose mechanism for overcoming bottleneck in electroreduction of CO2

Green Car Congress

Researchers at MIT have identified , quantified, and modeled a major reason for the poor performance of electroreduction processes to convert CO 2 to fuel or other useful chemicals. The findings could spur progress on developing a variety of materials and designs for electrochemical carbon dioxide conversion systems.

MIT 284
article thumbnail

MIT researchers develop oxygen permeable membrane that converts CO2 to CO

Green Car Congress

MIT researchers have developed a new system that could potentially be used for converting power plant emissions of carbon dioxide into carbon monoxide, and thence into useful fuels for cars, trucks, and planes, as well as into chemical feedstocks for a wide variety of products.

MIT 186
article thumbnail

Study finds the wettability of porous electrode surfaces is key to making efficient water-splitting or carbon-capturing systems

Green Car Congress

Now, a study at MIT has for the first time analyzed and quantified how bubbles form on these porous electrodes. The work is described in the journal Joule , in a paper by MIT visiting scholar Ryuichi Iwata, graduate student Lenan Zhang, professors Evelyn Wang and Betar Gallant, and three others. —Beta Gallant.

Water 418
article thumbnail

MIT researchers modify soil bacterium for biosynthesis of isobutanol using carbon

Green Car Congress

Researchers at MIT have modified the soil bacterium Ralstonia eutropha to produce isobutanol and 3-methyl-1-butanol (branched-chain higher alcohols). What it does is take whatever carbon is available, and stores it in the form of a polymer, which is similar in its properties to a lot of petroleum-based plastics. Earlier post.)

MIT 225
article thumbnail

MIT researchers identify viable anode material for molten oxide electrolysis for lower CO2 steel production

Green Car Congress

Researchers at MIT have identified inexpensive metal alloy materials that can serve as anodes for molten oxide electrolysis (MOE)—an electrometallurgical technique that enables the direct production of metal in the liquid state from oxide feedstock. They expect it could take about three years to design, build and test such a reactor.

MIT 255
article thumbnail

MIT Energy Initiative announces 2014 seed grant awards

Green Car Congress

The MIT Energy Initiative (MITEI) announced its latest round of seed grants to support early-stage innovative energy projects. They can thus be optimized for applications such as carbon capture, wastewater filtration, and natural gas storage, and for use in devices including fuel cells, rechargeable batteries, and solar cells.

MIT 210
article thumbnail

MIT, Novogy team engineers microbes for competitive advantage in industrial fermentation; the ROBUST strategy

Green Car Congress

Researchers at MIT and startup Novogy have engineered bacteria and yeast ( Escherichia coli , Saccharomyces cerevisiae and Yarrowia lipolytica ) used as producer microbes in biofuel production to use rare compounds as sources of nutrients. The researchers engineered E. The ROBUST strategy.

MIT 150