This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Researchers at MIT have developed a method that could significantly boost the performance of carbon capture and conversion systems that use catalytic surfaces to enhance the rates of carbon-sequestering electrochemical reactions. The movement through water is sluggish, which slows the rate of conversion of the carbon dioxide.
Researchers at the University of Oxford have developed a method to convert CO 2 directly into aviation fuel using a novel, inexpensive iron-based catalyst. The conversion reaction also produces light olefins—ethylene, propylene, and butenes—totalling a yield of 8.7%. and selectivity to C 8 –C 16 hydrocarbons of 47.8%
Inspired by naturally occurring processes, a team of Boston College chemists used a multi-catalyst system to convertcarbon dioxide to methanol at the lowest temperatures reported with high activity and selectivity. A paper on the work is published in the journal Chem.
Most of us naturally associate biological CO 2 conversion with photosynthesis in plants and algae. While engineering photosynthetic hosts to convert CO 2 into high-value products is sensible, dependence on sunlight limits its tractability and scalability. Their paper is published in the journal Joule. Acetogenic microbes (e.g.,
An international collaboration of scientists has taken a significant step toward the realization of a nearly “green” zero-net-carbon technology that can efficiently convert CO 2 and hydrogen into ethanol. There has been much work on carbon dioxide conversion to methanol, yet ethanol has many advantages over methanol.
reports that it has achieved full conversion ( 99% + ) of king grass cellulosic material to water soluble sugars on a repeatable basis. This conversion occurs with a reaction time of less than one minute. Full conversion is the most efficient use of the feedstock possible and exceeds earlier projections. Blue Biofuels, Inc.
Novozymes launched Fiberex, a comprehensive platform based on novel enzymes and yeast strains to convert corn fiber into ethanol. The technology converts a low-value by-product into high-value, low-carbon fuel while also enabling the production of significantly more corn oil.
Hydra Energy, the Hydrogen-as-a-Service (HaaS) provider for commercial fleets looking to reduce emissions and costs with limited risk and no up-front investment ( earlier post ), has delivered its first hydrogen-converted, heavy-duty truck to paying fleet customer Lodgewood Enterprises. And we've lowered our fuel costs in the process.
The electrocatalytic conversion of CO 2 using renewable energy could establish a climate-neutral, artificial carbon cycle. Conversion into liquid fuels would be advantageous because they have high energy density and are safe to store and transport. These could then be burned as needed. and Xiong, Y.
A retired ScotRail Class 314 electric set has been transported by road from its depot in Glasgow to the Bo’ness & Kinneil Railway where it will be converted to hydrogen-powered—a cleaner, greener alternative to diesel for non-electrified routes. —Transport Secretary Michael Matheson.
On 26 July, the first flue gas from the natural gas power plant, the Shepard Energy Center in Calgary, Canada, was directly transformed by the C2CNT process ( earlier post ) into carbon nanotubes. Carbon nanotubes grown by C2CNT directly from carbon dioxide (SEM and TEM imaging). Left and center. Earlier post.).
Researchers at the National Institute of Standards and Technology (NIST) and their colleagues have demonstrated a room-temperature method that could significantly reduce carbon dioxide levels in fossil-fuel power plant exhaust, one of the main sources of carbon emissions in the atmosphere. Credit: NIST.
ReactWell , LLC, has licensed a novel waste-to-fuel technology from the Department of Energy’s Oak Ridge National Laboratory to improve energy conversion methods for cleaner, more efficient oil and gas, chemical and bioenergy production. It can be used by refineries to upgrade their feedstock or to convert biomass to oil.
In Germany, BSE Engineering and the Institute for Renewable Energy Systems at Stralsund University of Applied Sciences (IRES) have demonstrated the conversion of wind power into renewable methanol. Operation of this technology under dynamic conditions will be confirmed during a year-long test.
Researchers at the Department of Energy’s Pacific Northwest National Laboratory have developed a new method to convert captured CO 2 into methane, the primary component of natural gas. Different methods for converting CO 2 into methane have long been known. A paper on the work is published in ChemSusChem. —Heldebrant et al.
By converting CO 2 into products of higher value, a closed-loop carbon economy begins to emerge. Among the metals studied, copper is the only metal known for its intrinsic ability to convert CO 2 into hydrocarbons and alcohols via electrochemical CO 2 RR. —Professor Tayhas Palmore, who co-authored the paper with Ph.D.
Volkswagen has begun conversion of its Emden, Germany plant to support the production of Evs; the first electric cars are to roll off the production line there from 2022. With the conversion of our plant at Emden into a production location for electric vehicles, Volkswagen is forcing the pace of system change. 4 and the ID.3
Researchers at Illinois Institute of Technology (IIT), with colleagues at the University of Pennsylvania and the University of Illinois at Chicago have developed an electrolyzer capable of convertingcarbon dioxide into propane in a manner that is both scalable and economically viable. —Esmaeilirad et al.
For the future, it will be important to commercialize advanced biofuel conversion technologies, which utilize a broader and more sustainable feedstock base. Sustainability: The HTL technology has the potential to produce fuels with a low carbon footprint over the entire life cycle, without competing with food and feed production.
Transform Materials has developed a novel and sustainable microwave plasma reactor process to convert natural gas into high-value hydrogen and acetylene, thereby opening up a new pathway for green chemical manufacturing. Acetylene can be then converted into many derivative chemicals, all possessing high value.
Scientists at Daegu Gyeongbuk Institute of Science and Technology, Korea, have developed a novel heterostructured photocatalyst using titanium and copper, two abundant and relatively inexpensive metals, for the conversion of CO 2 into CH 4. Apart from its CO 2 conversion capabilities, the proposed photocatalyst has other benefits.
Carbon transformation company Twelve and biotechnology company LanzaTech have transformed CO 2 emissions into ethanol as a part of an ongoing research and development partnership. Our process aims to rebalance the overabundance of carbon in our environment and instead reuse it for meaningful applications.
Lithium chemicals derived from hard rock sources such as spodumene can be more than three times as carbon-intensive as that from brine sources, according to Benchmark Mineral Intelligence’s (Benchmark Minerals’) Lithium ESG Report. The majority of spodumene is mined in Australia where it is processed into spodumene concentrate.
OXCCU, a company spun-out from the University of Oxford in 2021 that is focused on convertingcarbon dioxide and hydrogen into industrial and consumer products ( earlier post ), completed an £18-million (US$22.8 million) Series A financing round.
The technology group Wärtsilä and Norwegian ship owner Eidesvik Offshore ASA have signed a cooperation agreement aimed at converting an offshore supply vessel (OSV) to operate with an ammonia-fueled combustion engine with required fuel supply and safety system. The conversion will allow the vessel to operate with a 70% ammonia blend.
A team from King Abdullah University of Science and Technology (KAUST), Beijing Institute of Nanoenergy and Nanosystems, and Georgia Tech has developed a a wave-energy-driven electrochemical CO 2 reduction system that converts ocean wave energy to chemical energy in the form of formic acid, a liquid fuel. Leung et al. —Leung et al.
Researchers at the University of Southampton have transformed optical fibers into photocatalytic microreactors that convert water into hydrogen fuel using solar energy. Alongside hydrogen generation from water, the multi-disciplinary research team is investigating photochemical conversion of carbon dioxide into synthetic fuel.
Johnson Matthey has launched HyCOgen, a technologyt designed to play a pivotal role in enabling the conversion of captured carbon dioxide (CO 2 ) and green hydrogen into sustainable aviation fuel (SAF).
Researchers from University of Girona (Spain) successfully used electrically efficient microbial electrosynthesis cells (MES) to convert CO 2 to butyric acid. Chain elongation resulted in the selective (78% on a carbon basis) production of butyric acid, a valuable chemical used in pharmaceuticals, farming, perfumes, and the chemical industry.
Strategic Biofuels announced that its Carbon Capture and Sequestration (CCS) Test Well Program was successfully completed at the company’s Louisiana Green Fuels Project (LGF) in Caldwell Parish, Louisiana. Deep carbon negativity greatly increases the potential carbon credit revenues from our fuel and vastly improves the project’s returns.
The US Department of Energy (DOE) is awarding $35 million to 15 research projects through ARPA-E’s “Energy and Carbon Optimized Synthesis for the Bioeconomy” (ECOSynBio) program to decarbonize biorefining processes used across the energy, transportation, and agriculture sectors. Carbon-Negative Chemical Production Platform - $4,160,262.57.
A team from the University of Calgary and Rice University has used flash joule heating (FJH) ( earlier post ) to convert low-value asphaltenes—a by-product of crude oil refining—into a high-value carbon allotrope, asphaltene-derived flash graphene (AFG). Flash graphene from asphaltenes. (A) —Saadi et al.
Researchers at the Swiss Federal Institute of Technology (ETH) Zurich, Switzerland, have developed a carbon-supported platinum nanoparticle catalyst that can achieve complete hydrocracking of polypropylene into liquid hydrocarbons (C 5 –C 45 ). The platinum phase controls the activity, while the carbon carrier regulates selectivity.
Projects selected under this funding opportunity announcement (FOA) will perform conceptual design studies followed by field validations of cost-effective processes for ocean-based carbon capture and for direct air capture of CO 2 coupled with carbon-free hydrogen and captured CO 2 to create carbon-neutral methanol.
estimated that with conversion by hydrothermal liquefaction (HTL) and upgrading, the wet waste resource availability in the United States could be converted to jet fuel that is equivalent to about 24% of the U.S. Skaggs et al. demand in 2016. GLE and $0.9/GLE. Meanwhile, the plant size has a great impact on the MFSP.
Their research shows that converting a Falcon 50 to Liquid Ammonia Turbofan Combustion is the most efficient and commercially viable avenue to building a hydrogen-powered plane. Additionally, worldwide transportation and handling of liquid ammonia has been around for many years, making ammonia as a carbon-free fuel even more appealing.
Carbon dioxide capture company AirCapture and carbon dioxide conversion company OCOchem, along with other partners, have won a $2.93-million OCOchem transforms recycled CO 2 , water and zero-carbon electricity to produce formic acid, a globally traded commodity chemical and emerging electro-fuel.
That makes the fuel carbon neutral, especially if we use CO 2 captured directly from the air as an ingredient, hopefully in the not-too-distant future. The ceria—which is not consumed but can be used repeatedly—converts water and CO 2 injected into the reactor into syngas, a tailored mixture of hydrogen and carbon monoxide.
Researchers at the Department of Energy’s Pacific Northwest National Laboratory (PNNL) have created a new system—the least costly to date—that efficiently captures CO 2 and converts it into methanol. The new PNNL carbon capture and conversion system brings the cost to capture CO 2 down to about $39 per metric ton.
A new material that can selectively capture CO 2 molecules and efficiently convert them into useful organic materials has been developed by researchers at Kyoto University, along with colleagues at the University of Tokyo and Jiangsu Normal University in China. —Wu et al. —Susumu Kitagawa, materials chemist at Kyoto University.
Researchers at Linköping University, Sweden, are attempting to convertcarbon dioxide to fuel using energy from sunlight. Recent results have shown that it is possible to use their technique selectively to produce methane, carbon monoxide or formic acid from carbon dioxide and water.
The implementation of dual-fuel methanol engines focuses on new tugs as well as conversions of existing Cat-powered tugs, which comprise the majority of Svitzer’s fleet. The support Caterpillar provides in finding ways of converting our equipment to methanol usage plays a key role in this.
The US Department of Energy (DOE) will award up to $24 million for research into technology that captures carbon emissions directly from the air, replicating the way plants and trees absorb CO 2. ( DOE supports the search for carbon removal solutions at both the basic and applied science levels. DE-FOA-0002481 ).
ULEMCo has been awarded a major fleet-wide contract by Aberdeen City Council (ACC) for its hydrogen dual-fuel utility vehicle conversions. This gives a direct tailpipe CO 2 emission savings based on the comparative use of zero carbon hydrogen instead of diesel. Earlier post.)
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content