article thumbnail

Integrating nanomaterial with light-absorbing molecule powers hydrogen production from water and sunlight

Green Car Congress

Scientists at Tokyo Institute of Technology (Tokyo Tech) have developed a hybrid material constructed from a metal oxide nanosheet and a light-absorbing molecule for splitting water molecules (H 2 O) to obtain hydrogen (H 2 ) under sunlight. Dye-sensitized H 2 evolution using a wide-gap metal oxide. Credit: Tokyo Tech. 0c02053.

Water 320
article thumbnail

Tokyo Tech team demonstrates visible-light photoelectrochemical water-splitting with cobalt-enhanced TiO2

Green Car Congress

Scientists at Tokyo Institute of Technology (Tokyo Tech) have demonstrated the first visible-light photoelectrochemical system for water splitting using TiO 2 enhanced with cobalt. The proposed approach is simple and represents a stepping stone in the quest to achieve affordable water splitting to produce hydrogen.

Water 312
article thumbnail

Researchers develop highly efficient organometal halide perovskite photoelectrodes for water splitting

Green Car Congress

Photoelectrochemical (PEC) water splitting based on solar energy is one promising approach for the production of green hydrogen. However, its widespread application is limited by a lack of efficient photoanodes for catalyzing the rate-limiting oxygen evolution reaction (OER), an important reaction in PEC water splitting. 202300951

Water 369
article thumbnail

Sparc Hydrogen to test photocatalytic water splitting (PWS) reactor at CSIRO

Green Car Congress

The Sparc Green Hydrogen process combines concentrated solar (CS) with photocatalytic water splitting. The reactor is being designed to allow testing of new and improved photocatalysts as they are developed and also to slot into a linear Fresnel CS field. Providing valuable data and information for pilot plant reactor design.

Water 396
article thumbnail

UNC team synthesizes silicon nanowires that split water

Green Car Congress

Researchers from the University of North Carolina have synthesized high-photovoltage multijunction Si nanowires (SiNWs) that are co-functionalized to split water catalytically. When integrated with the co-catalysts and suspended in water, these light-activated nanoreactors produced hydrogen gas under visible and infrared light.

Water 221
article thumbnail

Photocatalytic optical fibers convert water into hydrogen

Green Car Congress

Researchers at the University of Southampton have transformed optical fibers into photocatalytic microreactors that convert water into hydrogen fuel using solar energy. Computerized tomography of a MOFC, showing buildup of TiO 2 (light blue particles) in the triangular channels. Zepler Institute, University of Southampton. 9b01577.

Water 371
article thumbnail

KIT team designs low-cost photoreactor for efficient solar-driven synthesis

Green Car Congress

Researchers from the Karlsruhe Institute of Technology (KIT) and their Canadian partners have designed a low-cost photoreactor design for solar-driven synthesis. Computer-aided design (CAD) model rendering of the single-channel lab photoreactor employed for the demonstration of the proposed photoreactor concept. Kant et al.

Low Cost 221