article thumbnail

MIT researchers propose mechanism for overcoming bottleneck in electroreduction of CO2

Green Car Congress

Researchers at MIT have identified , quantified, and modeled a major reason for the poor performance of electroreduction processes to convert CO 2 to fuel or other useful chemicals. The research was supported by Shell, through the MIT Energy Initiative. A paper on their work is published in the ACS journal Langmuir.

MIT 284
article thumbnail

Study finds the wettability of porous electrode surfaces is key to making efficient water-splitting or carbon-capturing systems

Green Car Congress

As water-splitting technologies improve, often using porous electrode materials to provide greater surface areas for electrochemical reactions, their efficiency is often limited by the formation of bubbles that can block or clog the reactive surfaces. As a result, there were substantial changes of the transport overpotential.

Water 418
article thumbnail

MIT researchers develop oxygen permeable membrane that converts CO2 to CO

Green Car Congress

MIT researchers have developed a new system that could potentially be used for converting power plant emissions of carbon dioxide into carbon monoxide, and thence into useful fuels for cars, trucks, and planes, as well as into chemical feedstocks for a wide variety of products. Ghoniem’s lab is exploring some of these options.

MIT 186
article thumbnail

MIT team engineers yeast to be more tolerant to toxic byproducts, boosting biofuels production; “tolerance module”

Green Car Congress

To try to expand biofuels’ potential impact, a team of MIT engineers has now found a way to expand the use of a wider range of nonfood feedstocks to produce such fuels. The MIT researchers developed a way to circumvent that toxicity, making it feasible to use those sources, which are much more plentiful, to produce biofuels.

MIT 246
article thumbnail

MIT researchers advancing development of supercritical water upgrading of heavy crude; lower cost, energy use and CO2

Green Car Congress

Findings by MIT researchers could help advance the commercialization of supercritical water technology for the desulfurization and upgrading of high-sulfur crude oil into high-value, cleaner fuels such as gasoline without using hydrogen—a major change in refining technology that would reduce costs, energy use, and CO 2 emissions.

MIT 150
article thumbnail

Researchers from MIT and Sun Catalytix develop an artificial leaf for solar water splitting to produce hydrogen and oxygen

Green Car Congress

Researchers led by MIT professor Daniel Nocera have produced an “artificial leaf”—a solar water-splitting cell producing hydrogen and oxygen that operates in near-neutral pH conditions, both with and without connecting wires. (B) MS signal and SFE values for a wireless configuration. Reece et al. Click to enlarge.

MIT 278
article thumbnail

MIT Researchers Identify New Low-Cost Water-Splitting Catalyst

Green Car Congress

Daniel Nocera and his associates have found another formulation, based on inexpensive and widely available materials, that can efficiently catalyze the splitting of water molecules using electricity. By doing so, he aims to imitate the process of photosynthesis, by which plants harvest sunlight and convert the energy into chemical form.

Low Cost 225