Remove Cheap Remove Cost Remove Low Cost Remove Water
article thumbnail

Researchers use melamine to create effective, low-cost carbon capture; potential tailpipe application

Green Car Congress

Using an inexpensive polymer called melamine, researchers from UC Berkeley, Texas A&M and Stanford have created a cheap, easy and energy-efficient way to capture carbon dioxide from smokestacks. The low cost of porous melamine means that the material could be deployed widely. —Mao et al.

Low Cost 243
article thumbnail

Penn State, FSU team develops low-cost, efficient layered heterostructure catalyst for water-splitting

Green Car Congress

A team of scientists from Penn State and Florida State University have developed a lower cost and industrially scalable catalyst consisting of synthesized stacked graphene and W x Mo 1–x S 2 alloy phases that produces pure hydrogen through a low-energy water-splitting process.

Low Cost 170
article thumbnail

Efficient recovery of lithium from spent LiFePO4 batteries via air oxidation–water leaching at room temperature

Green Car Congress

Researchers in China report using air oxidation–water leaching to recover lithium selectively from spent LiFePO 4 (LFP) material, in which the high leaching efficiency of lithium and the good separation effect of lithium and iron were achieved simultaneously. An open-access paper on their work is published in the RSC journal Green Chemistry.

Water 186
article thumbnail

BNL Researchers develop low-cost, efficient, non-noble metal electrocatalyst to produce hydrogen from water

Green Car Congress

James Muckerman at the US Department of Energy’s (DOE) Brookhaven National Laboratory (BNL) have developed a new class of high-activity, low-cost, non-noble metal electrocatalyst that generates hydrogen gas from water.

Low Cost 281
article thumbnail

KTH team develops new cost-effective water-splitting electrocatalyst for H2 production

Green Car Congress

Researchers at KTH Royal Institute of Technology in Stockholm have developed a new cost-effective electrocatalyst for water-splitting to produce hydrogen. Water splitting is considered one of the most promising strategies to produce chemical fuels such as hydrogen. —Fan et al.

Water 150
article thumbnail

Sandia team boosts hydrogen production activity by molybdenum disulfide four-fold; low-cost catalyst for solar-driven water splitting

Green Car Congress

A team led by researchers from Sandia National Laboratories has shown that molybdenum disulfide (MoS 2 ), exfoliated with lithiation intercalation to change its physical structure, performs as well as the best state-of-the-art catalysts for the hydrogen evolution reaction (HER) but at a significantly lower cost. —Stan Chou.

Low Cost 150
article thumbnail

Harvard team demonstrates new metal-free organic–inorganic aqueous flow battery; potential breakthrough for low-cost grid-scale storage

Green Car Congress

In a paper in Nature , they suggest that the use of such redox-active organic molecules instead of redox-active metals represents a new and promising direction for realizing massive electrical energy storage at greatly reduced cost. The design permits larger amounts of energy to be stored at lower cost than with traditional batteries.

Low Cost 374