Remove Carbon Remove Energy Storage Remove Li-ion Remove Low Cost
article thumbnail

Aqua Metals and 6K Energy partner to develop low-carbon CAM precursors for Li-ion batteries

Green Car Congress

The companies have initiated the partnership with a non-recurring engineering (NRE) agreement to develop low-carbon technology for the conversion of critical metals—first virgin and later recycled material—into battery-grade cathode active material (CAM) precursors, which are essential to 6K Energy’s advanced cathode manufacturing.

Li-ion 199
article thumbnail

BNEF: Li-ion battery pack prices rise for first time since 2010 to an average of $151/kWh

Green Car Congress

Rising raw material and battery component prices and soaring inflation have led to the first increase in lithium-ion battery pack prices since BloombergNEF (BNEF) began tracking the market in 2010. he upward cost pressure on batteries outpaced the higher adoption of lower cost chemistries like lithium iron phosphate (LFP).

Li-ion 414
article thumbnail

Team develops high-capacity Li-ion sulfur battery; no Li-metal anode

Green Car Congress

ion battery using an enhanced sulfur–carbon composite cathode that exploits graphene carbon with a 3D array (3DG?S) based anode (Li y SiO x –C)—i.e. avoiding the use of a Li metal anode entirely. The Li y SiO x –C/3DG? cost and high?energy?storage storage applications. Benítez et al.

Li-ion 231
article thumbnail

Ultrahigh-capacity anodes derived from natural silk for Li-ion batteries; other energy storage applications

Green Car Congress

Researchers at the Beijing Institute of Technology have found a way to process biomass-derived natural silk to create carbon-based nanosheets that could potentially be used in Li-ion batteries and other energy storage devices. Electrochemical performances of HPNC-NS as a Li-ion battery anode. (a)

Li-ion 150
article thumbnail

EnerG2 introduces silicon-carbon composite for Li-ion anodes; 5x improvement in cycle life over silicon

Green Car Congress

EnerG2, a company manufacturing advanced nano-structured materials for next-generation energy storage, has introduced a carbon and silicon composite to boost lithium-ion battery capacity and power performance. Earlier post.). Earlier post.). The composite material has been scaled for commercial manufacturing.

Li-ion 236
article thumbnail

UC Riverside team fabricates nanosilicon anodes for Li-ion batteries from waste glass bottles

Green Car Congress

Researchers at the University of California, Riverside’s Bourns College of Engineering have used waste glass bottles and a low-cost chemical process to fabricate nanosilicon anodes for high-performance lithium-ion batteries. Coating the silicon nanoparticles with carbon to improve their stability and energy storage properties.

Li-ion 150
article thumbnail

Mitsubishi Heavy to supply 500 kWh (normal) containerized Li-ion energy storage system to power grid of Orkney Islands

Green Car Congress

(MHI), jointly with SSE plc (formerly Scottish and Southern Energy plc), will begin an energy storage system demonstration project using the power grid in the UK’s Orkney Islands, which has a high proportion of renewable energy generation in relation to demand. In the project, Mitsubishi Power Systems Europe, Ltd.