Remove Carbon Remove Conversion Remove Hydrogen Remove Resource
article thumbnail

Three-part catalyst study advances conversion of CO2 to ethanol

Green Car Congress

An international collaboration of scientists has taken a significant step toward the realization of a nearly “green” zero-net-carbon technology that can efficiently convert CO 2 and hydrogen into ethanol. There has been much work on carbon dioxide conversion to methanol, yet ethanol has many advantages over methanol.

article thumbnail

Highly efficient and stable Ru-free catalyst for hydrogen generation from ammonia

Green Car Congress

Although the thermocatalytic ammonia decomposition reaction (ADR) is an effective way to obtain clean hydrogen, it relies on the use of expensive and rare ruthenium (Ru)-based catalysts, making it not sustainable or economically feasible. A complete ammonia conversion to hydrogen was achieved at an economically feasible 450 ?C

Hydrogen 448
article thumbnail

Stanford engineers develop catalyst strategy to improve turnover frequencies for CO2 conversion to hydrocarbons by orders of magnitude

Green Car Congress

Researchers at Stanford University have shown that porous polymer encapsulation of metal-supported catalysts can drive the selectivity of CO 2 conversion to hydrocarbons. CO 2 (black and red) and hydrogen molecules (blue) react with the help of a ruthenium-based catalyst. Chains with eight to 12 carbon atoms would be the ideal.

article thumbnail

Researchers develop earth-abundant photocatalyst for conversion of ammonia into hydrogen

Green Car Congress

and Princeton University’s Andlinger Center for Energy and the Environment have created a scalable photocatalyst that can convert ammonia into hydrogen fuel. This result demonstrates the potential for highly efficient, electrically driven production of hydrogen from an ammonia carrier with earth-abundant transition metals.

Hydrogen 273
article thumbnail

Researchers use chemical looping process to produce hydrogen from hydrogen sulfide gas

Green Car Congress

Researchers at The Ohio State University have used a chemical looping process to produce hydrogen from hydrogen sulfide gas—commonly called “sewer gas”. Hydrogen sulfide is emitted from manure piles and sewer pipes and is a key byproduct of industrial activities including refining oil and gas, producing paper and mining.

Hydrogen 425
article thumbnail

Haldor Topsoe to build large-scale SOEC electrolyzer manufacturing facility to meet customer needs for green hydrogen

Green Car Congress

With efficiencies above 90%, Topsoe’s proprietary SOEC electrolyzers offer superior performance in electrolysis of water into hydrogen—e.g., Solid oxide electrolysis cell (SOEC) technology is attractive because of unrivaled conversion efficiencies—a result of favorable thermodynamics and kinetics at higher operating temperatures.

Hydrogen 476
article thumbnail

WSU, GTI system uses electrochemical reforming of ethanol for compressed hydrogen production; CAPER

Green Car Congress

A team from Washington State University (WSU) and the Gas Technology Institute have used an ethanol and water mixture and a small amount of electricity in an electrochemical conversion system to produce pure compressed hydrogen. This is a new way of thinking about how to produce hydrogen gas. —Kee et al.

Hydrogen 243