Remove Battery Remove Low Cost Remove Recharge Remove Study
article thumbnail

Japan team evaluates battery-assisted low-cost hydrogen production from solar energy

Green Car Congress

Researchers from Japan’s NIMS (National Institute for Materials Science), the University of Tokyo and Hiroshima University have jointly conducted a techno-economic analysis for hydrogen production from photovoltaic power generation (PV) utilizing a battery-assisted electrolyzer. This approximately converts to US$1.92 to US$3.00/kg

Low Cost 403
article thumbnail

Researchers use graphite positive electrodes in high-capacity rechargeable lithium/chlorine batteries

Green Car Congress

The study is published in the Journal of the American Chemical Society. In an earlier study, the researchers reported ∼3.5 In an earlier study, the researchers reported ∼3.5 This work could open up widely available, low-cost graphitic materials for high-capacity alkali metal/Cl 2 batteries. 2c07826.

Recharge 243
article thumbnail

KIST team develops activation strategy for magnesium metal enabling efficient operation of Mg batteries

Green Car Congress

Minah Lee of the Energy Storage Research Center at the Korea Advanced Institute of Science and Technology (KIST) has developed a chemical activation strategy of magnesium metal that enables efficient operation of magnesium batteries in common electrolytes that are free of corrosive additives and can be mass-produced. 2c08672

Batteries 493
article thumbnail

Silica-based cathode enables long-life Li-S batteries

Green Car Congress

Scientists from the Daegu Gyeongbuk Institute of Science and Technology, Korea, have developed a novel silica-based cathode for lithium–sulfur batteries, thereby enabling the realization of batteries that can last for more than 2,000 charge/discharge cycles. However, using sulfur in batteries is tricky for two reasons.

article thumbnail

UT Austin team devises new strategy for safe, low-cost, all-solid-state rechargeable Na or Li batteries suited for EVs

Green Car Congress

John Goodenough, known around the world for his pioneering work that led to the invention of the rechargeable lithium-ion battery, have devised a new strategy for a safe, low-cost, all-solid-state rechargeable sodium or lithium battery cell that has the required energy density and cycle life for a battery that powers an all-electric road vehicle.

Low Cost 150
article thumbnail

Kyoto team develops new cathode material for high-energy-density rechargeable magnesium batteries

Green Car Congress

A team of researchers from Kyoto University has demonstrated ion-exchanged MgFeSiO 4 as a feasible cathode material for use in high-energy-density rechargeable magnesium batteries. 3 , which is approximately five times higher than that of the conventional graphite anodes in lithium ion batteries (LIBs). —Orikasa et al.

Recharge 252
article thumbnail

Low-cost N-doped interlayer derived from loofah sponge enables high-performance Li-S, Li-Se and LiI2 batteries

Green Car Congress

Researchers from Griffith University in Australia and Peking University in China have synthesized low-cost, hierarchically porous, and nitrogen-doped loofah sponge carbon (N-LSC) derived from the loofah sponge via a simple calcining process and applied it as a multifunctional blocking layer for Li–S, Li–Se, and Li–I 2 batteries.

Low Cost 150