Remove Batteries Remove Li-ion Remove Sodium Remove Study
article thumbnail

PNNL team develops electrolyte for high-voltage sodium-ion battery with extended longevity

Green Car Congress

Cheap and abundant, sodium is a promising candidate for new battery technology. However, the limited performance of sodium-ion batteries has hindered large-scale application. Sodium-ion batteries (NIBs) have attracted worldwide attention for next-generation energy storage systems.

Sodium 334
article thumbnail

New long-duration, extended capacity Na-Al battery design for grid storage

Green Car Congress

Researchers led by the Department of Energy’s Pacific Northwest National Laboratory (PNNL) have extended the capacity and duration of sodium-aluminum batteries. The new sodium-based molten salt battery uses two distinct reactions. The team previously reported a neutral molten salt reaction. of peak charge capacity.

article thumbnail

Chalmers team develops graphite-like anode for Na-ion batteries; Janus graphene

Green Car Congress

Researchers at Chalmers University of Technology, Sweden, have developed a nanometric graphite-like anode for sodium ion (Na + storage), formed by stacked graphene sheets functionalized only on one side, termed Janus graphene. The estimated sodium storage up to C 6.9 100 to 150 mA h g ?

Sodium 493
article thumbnail

Researchers show that inherent lithium ions in bioderived borate polymer enhance extreme fast charging capability in graphite anodes

Green Car Congress

In order to enable fast-charging ability in batteries, researchers have attempted to enhance the mass transfer of electrolytes and charge transfer in electrodes, with extensive research carried out on the former compared to the latter. Generally, when charging surpasses rate of intercalation, Li + plating occurs on graphite electrodes.

article thumbnail

Stanford team develops sodium-ion battery with performance equivalent to Li-ion, but at much lower cost

Green Car Congress

Stanford researchers have developed a sodium-ion battery (SIB) that can store the same amount of energy as a state-of-the-art lithium ion, at substantially lower cost. Thus, further research is required to find better sodium host materials. The sodium salt makes up the cathode; the anode is made up of phosphorous.

Sodium 186
article thumbnail

Vanderbilt researchers find iron pyrite quantum dots boost performance of sodium-ion and Li-ion batteries

Green Car Congress

nm, average) of iron pyrite (FeS 2 ) nanoparticles are advantageous to sustain reversible conversion reactions in sodium ion and lithium ion batteries. In this work we explore the sodium and lithium conversion of ultrafine FeS 2 nanoparticles, with a tight size distribution centered around ∼4.5

Li-ion 150
article thumbnail

New high energy, highly stable cathode for sodium-ion batteries

Green Car Congress

F 0.7 , for sodium-ion (Na-ion) batteries (NIBs). This new material provides an energy density of 600 Wh kg –1 , the highest value among Na-ion cathodes. Recently, attention has been refocused on room-temperature Na-ion batteries (NIBs) as a low-cost alternative technology as compared to LIBs.

Sodium 292