Remove Li-ion Remove Low Cost Remove Range Remove Universal
article thumbnail

MGX Minerals partners with University of British Columbia to develop metallurgical silicon-based anodes for high-energy Li-ion batteries

Green Car Congress

is funding a research consortium with the University of British Columbia (UBC) to develop a low-cost and scalable method for fabricating silicon-based anodes to improve the energy density of Li-ion batteries. Fabrication and evaluation of Si-based anode for Li-ion batteries.

Li-ion 191
article thumbnail

ARPA-E awards $42M to 12 projects for advanced EV batteries; EVs4ALL program

Green Car Congress

Projects selected for the Electric Vehicles for American Low-Carbon Living (EVs4ALL) program ( earlier post ) aim to expand domestic EV adoption by developing batteries that last longer, charge faster, perform efficiently in freezing temperatures and have better overall range retention. Award amount: $3,425,000).

Li-ion 256
article thumbnail

Tin-based nanoplates as promising anode materials for high-capacity Li-ion batteries

Green Car Congress

Researchers from the Harbin Institute of Technology, with colleagues from the Beijing University of Technology and the University of Wisconsin Milwaukee, have synthesized tin chalcogenide (SnSe 0.5 S 0.5 ) nanoplates for use as Li-ion anodes. Electrochemical performance of a Li-ion full cell. (a)

Li-ion 186
article thumbnail

U Akron team develops Mn-based high performance anode for Li-ion batteries

Green Car Congress

Researchers at the University of Akron have developed hierarchical porous Mn 3 O 4 /C nanospheres as anode materials for Li-ion batteries. mA/g), excellent ratability (425 mAh/g at 4 A/g), and extremely long cycle life (no significant capacity fading after 3000 cycles at 4A/g) as an anode in a Li-ion battery.

Li-ion 199
article thumbnail

Rice University researchers develop inexpensive silicon-based anode for Li-ion batteries with good capacity and cycle life

Green Car Congress

Researchers at Rice University have created an inexpensive silicon-based anode material for Li-ion batteries consisting of macroporous silicon particulates (MPSPs) created by crushing porous silicon films they had earlier developed. Thakur et al. Click to enlarge. Earlier post.) —Lisa Biswal.

Li-ion 240
article thumbnail

UMD researchers report solution to high interfacial impedance hampering developing of high-performance solid-state Li-ion batteries

Green Car Congress

Garnet-type solid-state electrolytes (SSEs) for Li-ion batteries offer a range of attractive benefits, including high ionic conductivity (approaching 1 mS cm −1 at room temperature); excellent environmental stability with processing flexibility; and a wide electrochemical stability window. Credit: Han et al.

Li-ion 150
article thumbnail

Faraday Institution to award up to £55M to five consortia for energy storage research

Green Car Congress

This expanded portfolio has the dual aims of improving current generation lithium ion batteries as well as longer horizon materials discovery and optimisation projects to support the commercialisation of next-generation batteries. The project’s Principal Investigator is Professor Patrick Grant of the University of Oxford.