This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Michael Grätzel at EPFL (Ecole Polytechnique Fédérale de Lausanne) in Switzerland has developed a highly efficient and low-cost water-splitting cell combining an advanced perovskite tandem solar cell and a bi-functional Earth-abundant catalyst. Currently, perovskite instability limits the cell lifetime.) Credit: EPFL.
Researchers from the US and Denmark have engineered a bio-inspired molybdenum sulfide catalyst as an inexpensive, abundant alternative to platinum and coupled it with a light-absorbing electrode to create a photo-electrochemical water splitting device to make hydrogen fuel from sunlight and water. —Hou et al.
The nanostructured photoelectrode results in spontaneous hydrogen evolution from water without any external bias applied with a faradaic efficiency of 30% and excellent stability. A promising way of storing solar energy is via chemical fuels, in particular hydrogen as it is considered as a future energy carrier.
Researchers from the University of Houston (UH) have developed a cobalt(II) oxide (CoO) nanocrystalline catalyst that can carry out overall water splitting with a solar-to-hydrogen efficiency of around 5%. The generation of hydrogen from water using sunlight could potentially form the basis of a clean and renewable source of energy.
Researchers from the Karlsruhe Institute of Technology (KIT) and their Canadian partners have designed a low-cost photoreactor design for solar-driven synthesis. Until now, however, the technology has mainly been found in the laboratory because the costs of producing solarhydrogen were simply too high.
As the fraction of electricity generation from intermittent renewable sources—such as solar or wind—grows, the ability to store large amounts of electrical energy is of increasing importance. Solid-electrode batteries maintain discharge at peak power for far too short a time to fully regulate wind or solar power output.
A team of researchers at MIT has described a framework for efficiently coupling the power output of a series-connected string of single-band-gap solar cells to an electrochemical process that produces storable fuels. Such a system would use sunlight to produce a storable fuel, such as hydrogen, instead of electricity for immediate use.
The traces are for solar cells of 7.7% Researchers led by MIT professor Daniel Nocera have produced an “artificial leaf”—a solar water-splitting cell producing hydrogen and oxygen that operates in near-neutral pH conditions, both with and without connecting wires. solar-to-fuels systems. illumination.
The Ni-B i films can be prepared with precise thickness control and operate at modest overpotential providing an alternative to the Co catalyst for applications in solar energy conversion. But in further work, “ we have totally gotten rid of the platinum of the hydrogen side ,” Nocera says. 1001859107.
The mesh with BiVO 4 nanowire photoanode for water oxidation and Rh-SrTiO 3 nanowire photocathode for water reduction produces hydrogen gas without an electron mediator. an “artificial leaf” to produce hydrogen—based on a nanowire mesh that lends itself to large-scale, low-cost production. Credit: ACS, Liu et al.
The prototype system is made up of three interconnected, new-generation, crystalline silicon solar cells attached to an electrolysis system that does not rely on rare metals. crystalline Silicon (c-Si) solar cells show high solar-to-electricity efficiencies, and have demonstrated stabilities in excess of 25 years.
The DOE Fuel Cell Technologies Office also issued a separate solicitation for work a broader range of hydrogen production technologies. ( DE-FOA-0000826 ).
Researchers in South Korea have developed a simple, low-cost and eco-friendly method of creating nitrogen-doped graphene nanoplatelets (NGnPs) with excellent catalytic performance in both dye-sensitized solar cells and fuel cells to replace conventional platinum (Pt)-based catalysts for energy conversion. 1116897109.
The new catalyst is applied in a hybrid photocatalytic-electrolysis system that uses the photocatalytic reaction converting solar energy to lower the electrolysis voltage required for the hydrogen production by water electrolysis. Potential diagram of various reaction mechanisms for hydrogen production via water decomposition.
million for seven research projects designed to advance a broad range of renewable energy technologies, including solar cells, batteries, renewable fuels and bioenergy. The mineral perovskite is a promising, low-cost material for enhancing the efficiency of silicon solar cells. efficiency, low-cost silicon solar cells.
Left, global light-duty fleet in the electric-favoring case; right, the hydrogen-favoring case. In both electric- and hydrogen-favoring cases, availability of low-carbon electricity and hydrogen prolonged the use of petroleum-fueled ICE vehicles. Top, without CCS and CSP; bottom, with CCS and CSP. Click to enlarge.
The centers selected for the second round of funding will help lay the scientific groundwork for fundamental advances in solar energy, electrical energy storage, carbon capture and sequestration, materials and chemistry by design, biosciences, and extreme environments. Light-Material Interactions in Energy Conversion (LMI).
In this context, bio- derived fatty acids are promising candidates, owing to their inherent structural similarities to diesel-type hydrocarbons, inedible nature, abundance and lowcost. A substantial amount of fatty acids are produced as low-value by-products in fat and oil processing and the pulp industry. —Huang et al.
Researchers at the National Institute of Standards and Technology (NIST) have demonstrated a significant improvement in the performance of solar-powered hydrogen generation by employing a metal–insulator–semiconductor (MIS) photoelectrode architecture that allows for stable and efficient water splitting using narrow bandgap semiconductors.
million for 12–24 month projects with industry and academia ( DE-FOA-0000966 ) in support of innovations in fuel cell and hydrogen fuel technologies. Fuel cell–based electrochemical conversion devices for stationary energy storage (TRL 2- 5). Hydrogen infrastructure (TRL 9-10). including soft costs) are of interest.
Efficiency improvements and carbon emissions reduction in energy conversion and storage technologies. HPC Modeling of Rapid Infrared Sintering for LowCost, Efficient Solid Oxide Electrolyzer Cell Manufacturing. Solar Turbines. All Selectees. Redox Power Systems. Siemens Energy. Praxair Surface Technologies. 300,000 .
Researchers at the University of Rochester (New York) have developed a robust and highly active system for solarhydrogen generation in water using semiconductor nanocrystals (NCs) and a nickel catalyst. optimize catalysts for hydrogen production). for light-to-chemical energy conversion. reduces protons.
This illustration depicts the synthesis of a new hydrogen-production catalyst from soybean proteins and ammonium molybdate. The hybrid material effectively catalyzes the conversion of liquid water to hydrogen gas while remaining stable in an acidic environment.
Researchers at North Carolina State University have developed a highly effective new perovskite-promoted iron oxide redox catalyst for a hybrid solar-redox scheme they had proposed earlier for partial oxidation and water-splitting of methane. Schematic of the hybrid process for liquid fuel and hydrogen generation. Click to enlarge.
While chemically converting natural gas to liquid fuels (GTL) is a proven technology that increases volumetric energy density, the current conversion approach through Fischer-Tropsch (FT-GTL) is challenged by both high capital costs and lowconversion efficiencies. Enzyme Engineering for Direct Methane Conversion.
A team of researchers at Ulsan National Institute of Science and Technology (UNIST), Korea University, and the Korea Advanced Institute of Science and Technology (KAIST) has developed a new type of multilayered (Au NPs/TiO 2 /Au) photoelectrode that could boost the ability of solar water-splitting to produce hydrogen.
When integrated with the co-catalysts and suspended in water, these light-activated nanoreactors produced hydrogen gas under visible and infrared light. Photoelectrochemical (PEC) water splitting to produce hydrogen fuel was first reported 50 years ago, yet artificial photosynthesis has not become a widespread technology. Litvin, S.R.
A team at McGill University in Canada has developed a reversible hydrogen storage/release system based on the metal-catalyzed hydrogenation and photo-induced dehydrogenation of organic cyclic hydrocarbons at room temperature. under visible light illumination (420–600 nm) without any other energy input. —Li et al.
Researchers at Rutgers University have developed a new noble metal-free catalyst—Ni 5 P 4 (nickel-5 phosphide-4)—performing on par with platinum for the hydrogen evolution reaction (HER) in both strong acid and base. 2 , equivalent to ~10% solar photoelectrical conversion efficiency. 62 mV overpotential at ?100
The Energy Department (DOE) recently announced $10 million, subject to appropriations, to support the launch of the HydroGEN Advanced Water Splitting Materials Consortium ( HydroGEN ). Currently, the Office of Energy Efficiency and Renewable Energy (EERE) funds research and development of low-carbon hydrogen production pathways.
The US Department of Energy (DOE) awarded nearly $34 million to 19 industry- and university-led research projects that will advance technology solutions to make clean hydrogen a more available and affordable fuel for electricity generation, industrial decarbonization, and transportation. Earlier post.)
The catalyst is also readily applicable to other energy storage and conversion systems, including metal-air batteries, supercapacitors, electrolyzers, dye-sensitized solar cells, and photocatalysis. An open-access paper on their work appears in the journal Joule. This work demonstrates that a multi-phase catalyst coating (?
In support of the biomass fractionator, the company is also developing a range of one-step catalytic conversion processes which mate with the fractionator’s output gas streams to produce products such as eBTX (high octane gasoline), synthetic diesel and proprietary ultra-high crop yield “super” fuels. Click to enlarge.
These new GaN power devices will enable the next generation of low-cost, fast, small, and reliable power electronics, which are key for efficient power conversion in data centers, solar farms, power grids, and electric vehicles. Stanford University. The Ohio State University. University of Washington.
This project explores the use of specially designed nanostructured polymers to make high-energy, low-cost, flexible and stretchable batteries. Ultrathin Light Absorbers for Solar Cells. One way to lower the cost of solar power is to dramatically reduce the thickness of light-absorbing layers in solar cells.
Developing high-efficiency in-vehicle solar power generation systems. The three parties will seek to popularize vehicles equipped with solar power generation systems, which convert light energy into electrical energy. Developing elemental technologies for the production, transportation, and use of hydrogen.
million NIRAP funding to the Institute for Molecular Bioscience would help develop biodiesel, methane and hydrogen from low-cost, high productivity microalgal photo-bioreactors. Hankamer said the $1.48
Researchers globally are exploring a range of target solar fuels fuels, from hydrogen gas to liquid hydrocarbons; producing any of these fuels involves splitting water. Each water molecule consists of an oxygen atom and two hydrogen atoms. Tiered screening pipeline for accelerated discovery of solar fuels photoanodes.
The US Department of Energy (DOE) Advanced Research Projects Agency - Energy (ARPA-E) will award up to $30 million to fund a new program focused on the development of transformational electrochemical technologies to enable low-cost distributed power generation. DE-FOA-0001026 ). Source: ARPA-E. Click to enlarge. Source: ARPA-E.
Researchers at Stanford University have developed a new low-voltage, single-catalyst water splitter that continuously generates hydrogen and oxygen. Currently, the state-of-the-art catalysts to split water are IrO 2 and Pt for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), respectively, with ~1.5 V
Direct Solar Fuels (5 projects). Eagle Picher, in partnership with the Pacific Northwest National Laboratory, will develop a new generation of high energy, lowcost planar liquid sodium beta batteries for grid scale electrical power storage applications. LowCost, High Energy and Power Density, Nanotube-Enhanced Ultracapacitors.
Electrofuels approaches will use organisms able to extract energy from other sources, such as solar-derived electricity or hydrogen or earth-abundant metal ions. Novel Biological Conversion of Hydrogen and Carbon Dioxide Directly into Biodiesel. Reducing equivalent: Hydrogen; Organism: Hydrogen bacteria; Product: Butanol.
The US Department of Energy (DOE) announced ( DOE-FOA-0001224 ) up to $35 million in available funding to advance fuel cell and hydrogen technologies, and to enable early adoption of fuel cell applications, such as light duty fuel cell electric vehicles (FCEVs). Subtopics include Microbial Biomass Conversion. Earlier post.).
A ceramic-based mechanical pump able to operate at record temperatures of more than 1,400 ˚C (1,673 K) can transfer high-temperature liquids such as molten tin, enabling a new generation of energy conversion and storage systems.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content