This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
The US National Energy Technology Laboratory (NETL) is collaborating with the University of Kentucky and their subcontractor Virginia Tech to demonstrate a novel process for the extraction of REEs from coal using plasma. However, domestic coal is of interest as a potentially abundant and easily accessible REE source in the US.
A multi-Hubbert analysis of coal production by Tadeusz Patzek at The University of Texas at Austin and Gregory Croft at the University of California, Berkeley concludes that the global peak of coal production from existing coalfields will occur close to the year 2011. Gt C (15 Gt CO 2 ) per year, according to the study.
The amount of methane released into the atmosphere as a result of coal mining is likely approximately 50% higher than previously estimated, according to research presented at the recent annual meeting of the American Geophysical Union. The authors point out that less coal production doesn’t translate to less methane.
Researchers at The Ohio State University have developed a novel process to clean coal mine drainage and extract rare-earth elements from it. Coal mine drainage (CMD) impairs tens of thousands of kilometers of U.S. CMD, coal mine drainage; TEP, trap-extract-precipitate. —Miranda et al. Miranda et al. 2021.0378.
The University of Wyoming (UW) has received a $2 million grant from coal giant Peabody Energy to create the Peabody Energy Clean Coal Technology Laboratory in the UW Energy Resources Center in Laramie. Peabody Energy is the world’s largest private-sector coal company.
World energy consumption projections expect coal to stay one of the world’s main energy sources in the coming decades, and a growing share of it will be used in CT—the conversion of coal to liquid fuels (CTL). By 2020, CTL is expected to account for 15% of the coal use in China. —Wang et al.
San Juan River-Raton-Black Mesa Basin (Arizona, Colorado and New Mexico): New Mexico Institute of Mining and Technology plans to determine the rare earth elements and critical minerals resource potential in coal and related stratigraphic units in the San Juan and Raton basins in New Mexico. DOE Funding: $1,499,997.
The largest drop in emissions in 2012 came from coal, which is used almost exclusively for electricity generation. During 2012, particularly in the spring and early summer, low natural gas prices led to competition between natural gas- and coal-fired electric power generators. Duke study.
“Blue” hydrogen—produced through steam methane reforming (SMR) of natural gas or coal gasification, but with CO 2 capture and storage—is being described as having low or zero carbon emissions. Carbon dioxide emissions, including emissions from developing, processing, and transporting the fuels, are shown in orange.
The US Department of Energy (DOE) has selected 8 research projects for funding that will focus on gasification of coal/biomass to produce synthetic gas (syngas) as a pathway to producing power, hydrogen, fuel or chemicals. CoalTek, teaming with the University of Kentucky Center for Applied Energy Research in Lexington, Ky., Tucker, Ga.)
The US Department of Energy’s Office of Fossil Energy (FE) and the National Energy Technology Laboratory (NETL) announced that the University of North Dakota has been awarded a 2-year, $1.5-million million contract to sample and characterize US coal-based resources containing high concentrations of rare earth elements (REEs).
Ramaco Carbon is partnering with Oak Ridge National Laboratory to develop new, large-scale processes for making graphite from coal. The conversion of coal to higher value materials, such as graphene, graphite or carbon nanotubes, is of high interest, and a number of researchers have proposed processes.
The Department of Energy (DOE) is funding six research and development projects that will repurpose domestic coalresources for high-value graphitic products and carbon-metal composites that can be employed in clean energy technologies. Earlier post.) Understanding ultra-conductive carbon metal composite wire for electric motors.
million in federal funding to develop conceptual designs of commercially viable technologies that will extract rare earth elements (REEs) from US coal and coal by-product sources. Energy Fuels Resources (Lakewood, CO). Texas Mineral Resources Corp (Sierra Blanca, TX). University of North Dakota (Grand Forks, ND).
In regions where the share of coal-based electricity is relatively low, EVs can achieve substantial GHG reduction, the team reports in a paper in the ACS journal Environmental Science & Technology. According to the 12 th Five-Year Plan of the China Coal Industry (2011?2015)
The lab’s flash Joule heating process, introduced several years ago to produce graphene from any solid carbon source ( earlier post ), has now been applied to three sources of rare earth elements—coal fly ash, bauxite residue and electronic waste—to recover rare earth metals. —Deng et al. Courtesy of the Tour Group.
CO 2 emissions from US coal-fired power plant could be phased out entirely by 2030 using existing technologies or ones that could be commercially competitive with coal within about a decade, according to a paper published online 30 April in the ACS journal Environmental Science & Technology. Credit: ACS, Kharecha et al.
The researchers found that while EVs do offer a very promising solution to energy issues due to their replacement of petroleum fuels, for now “ the high pollution levels of coal-fired power plants will trade off EVs’ potential energy benefits in China ”. The power of EVs is electricity from the grid.
Awardees will receive approximately $16 million to advance the gasification process, which converts carbon-based materials such as coal into syngas for use as power, chemicals, hydrogen, and transportation fuels. Advanced Gasifier and Water-Gas Shift Technologies for Low-Cost Coal Conversion to High-Hydrogen Syngas. TDA Research Inc.,
The US Department of Energy (DOE) selected eight projects to advance the development of transformational oxy-combustion technologies capable of high-efficiency, low-cost carbon dioxide capture from coal-fired power plants. University of Kentucky Research Foundation. Washington University. Babcock & Wilcox Power Generation Group.
Bin Hao, Chonglin Song, Gang Lv, Bo Li, Xiaofang Liu, Kan Wang, Yaowu Liu (2014) “Evaluation of the reduction in carbonyl emissions from a diesel engine using Fischer–Tropsch fuel synthesized from coal,” Fuel Vol. CFT had 16.5–44.1% —Hao et al. 133:115–122, doi: 10.1016/j.fuel.2014.05.025. 2014.05.025. Jakober, Michael A.
and the University of Houston will work together to further understanding of the geology and composition of crude oil. This collaboration with a premier energy university reaffirms our commitment, as the market leader in instruments for this industry, to continue to develop new technologies and applications for our customers.
Simplified flowsheet of the proposed solar hybridized coal- to-liquids (SCTL) process with the proposed solar hybridized dual fluidized bed (SDFB) gasifier. Hence, it is desirable to seek alternative concepts with potential to address these challenges for the solar hybridized coal-to-liquids (SCTL) process. Credit: ACS, Guo et al.
A full-scale test of advanced hyperbaric centrifuge technology at a Jim Walter Resources Inc. coal-cleaning plant in Alabama successfully reduced moisture from ultrafine coal waste. which built the initial prototype unit that successfully dewatered fine coal to a level of 13 to 19% moisture at a rate of 30 gallons per minute.
Overview of the bluegas catalytic coal methanation process. By adding a catalyst to the coal gasification system, GreatPoint Energy is able to reduce the operating temperature in the gasifier, while directly promoting the reactions that yield methane, (CH 4 ). Click to enlarge.
Researchers at Penn State University have shown that certain ionic liquids can be used to fragment, disperse, and partially dissolve coal to such an extent that good contact can be made with catalyst particles by simply mixing these particles with the ionic liquid/coal dispersion for improved efficiency of liquefaction.
Produced water from coal-bed natural gas (CBNG) production may contain sodium bicarbonate (NaHCO 3 ) at concentrations that can harm aquatic life, according to a new study by the US Geological Survey; Montana Fish, Wildlife and Parks; the Bureau of Land Management and the US Environmental Protection Agency. Farag, A.M., and Harper, D.D.,
The US Department of Energy’s (DOE) Office of Fossil Energy (FE) has selected four projects for cost-shared research and development under the funding opportunity announcement (FOA), DE-FOA-0002180, Design Development and System Integration Design Studies for Coal FIRST Concepts.
Texas Mineral Resources Corp. TMRC’s project partners include Penn State, Jeddo Coal Company and McCarl’s. This is the fourth US Government award relating to the production of rare earth minerals in which Texas Mineral Resources has participated. The award value is approximately $1.1
Comparison of coal consumption and CO 2 emissions for co-production and separate production of liquids and power. Conventional CTL plant gasifies coal to produce a syngas which is then converted in a Fischer-Tropsch reactor to products. Tags: Coal-to-Liquids (CTL) Emissions. Source: Mantripragada and Rubin. Click to enlarge.
Australia’s CSIRO (Commonwealth Scientific and Industrial Research Organization, Australia’s national science agency) and Australia Pacific LNG (a coal seam gas to LNG joint venture between Origin and ConocoPhillips) have launched a new research alliance to support the development of the coal seam gas (CSG) industry.
The selected projects are intended to improve the economics of IGCC plants and promote the use of the US’abundant coalresources. For example, a 60%-efficient gasification power plant can cut the formation of carbon dioxide by 40% compared to a typical coal combustion plant, the DOE said. TDA Research, Inc.
A dewatering technology developed at Virginia Tech has succeeded in reducing the moisture content of ultrafine coal to less than 20%, transforming it to a salable product. During recent prototype tests at Arch Coal Company’s Cardinal plant in Logan County, W.Va., Roe-Hoan Yoon. as part of a license agreement with Virginia Tech.
A consortium led by BP-Eni 50:50 joint venture VICO has signed a production sharing contract (PSC) with the Government of Indonesia for the exploration and development of coalbed methane (CBM) resources on the Sanga-Sanga block in East Kalimantan, Indonesia. The Sanga-Sanga CBM PSC was awarded to a consortium comprising VICO (7.5%
Coal could become a major source of the metal lithium, according to a review of the geochemistry by scientists from Hebei University of Engineering in China published in the International Journal of Oil, Gas and Coal Technology. Indeed, the extraction of lithium from coal would offer an ironic twist to its continued use.
Researchers at The Ohio State University have used a chemical looping process to produce hydrogen from hydrogen sulfide gas—commonly called “sewer gas”. The team first used chemical looping on coal and shale gas to convert fossil fuels into electricity without emitting carbon dioxide into the atmosphere. 1c03410.
A new study by Michael Wang and Jeongwoo Han at Argonne National Laboratory and Xiaomin Xie at Shanghai Jiao Tong University assesses the effects of carbon capture and storage (CCS) technology and cellulosic biomass and coal co-feeding in Fischer-Tropsch (FT) plants on energy use and greenhouse gas (GHG) emissions of FT diesel (FTD).
The Department of Energy (DOE) has selected nine projects to receive approximately $4 million in cost-shared federal funding to improve the technical, environmental, and economic performance of new and existing technologies that extract, separate, and recover rare earth elements (REEs) from domestic US coal and coal by-products.
The US Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has found high rare earth element (REE) concentrations in coal samples taken from the Illinois, Northern Appalachian, Central Appalachian, Rocky Mountain Coal Basins, and the Pennsylvania Anthracite region.
Researchers from the University of Birmingham have designed a novel adaptation for existing blast furnaces that could reduce CO 2 emissions from the steelmaking industry by nearly 90%. If implemented in the UK alone, the system could deliver cost savings of £1.28 billion in 5 years while reducing overall UK emissions by 2.9%. 2023.135963.
Jacobson, professor of civil and environmental engineering at Stanford University, suggests that carbon capture technologies are inefficient and increase air pollution. Upstream emissions are emissions, including from leaks and combustion, from mining and transporting a fuel such as coal or natural gas.). A study by Mark Z.
A study by researchers at Harvard University and Tsinghua University shows that there is enough wind in China to generate electricity to supply the nation's entire projected demand for 2030 (about twice what is used now) at reasonable prices per kilowatt-hour. The paper was published in the 11 September issue of the journal Science.
A NASA-led team of scientists has uncovered strong evidence that coal soot from a rapidly industrializing Europe caused the abrupt retreat of mountain glaciers in the European Alps that began in the 1860s, a period often thought of as the end of the Little Ice Age (LIA). —Georg Kaser, a study co-author from the University of Innsbruck.
The Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has selected Pennsylvania State University as the lead institution to establish the University Coalition for Fossil Energy Research.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content