This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Stanford researchers, with a colleague from King Fahd University of Petroleum and Minerals, have developed a simple and environmentally sound way to make ammonia with tiny droplets of water and nitrogen from the air. This gas–liquid–solid heterogeneous catalytic system synthesizes ammonia in 0.2 The conversion rate reaches 32.9 ± 1.38
As water-splitting technologies improve, often using porous electrode materials to provide greater surface areas for electrochemical reactions, their efficiency is often limited by the formation of bubbles that can block or clog the reactive surfaces. As a result, there were substantial changes of the transport overpotential.
There is an accompanying need to develop new low-cost and low-carbon technologies for hydrogen production. Aurora Hydrogen is scaling its proprietary and highly efficient microwave pyrolysis technology to produce hydrogen and solid carbon from natural gas without generating CO 2 emissions or consuming water.
Researchers at MIT have developed a method that could significantly boost the performance of carbon capture and conversion systems that use catalytic surfaces to enhance the rates of carbon-sequestering electrochemical reactions. This output can help to subsidize the process, offsetting the costs of reducing greenhouse gas emissions.
The technology group Wärtsilä is developing the combustion process in its gas engines to enable them to burn 100% hydrogen fuel. Wärtsilä has researched hydrogen as a fuel for 20 years, and has tested its engines with blends of up to 60% hydrogen and 40% natural gas. Hydrogen as part of the renewable electricity system of the future.
This award marks the first Advanced Class Gas Turbines in the industry specifically designed and purchased as part of a comprehensive plan to sequentially transition from coal, to natural gas and finally to renewable hydrogen fuel, and creates a roadmap for the global industry to follow. MHPS gas turbines have more than 3.5
A fast, green and one-step method for producing porous carbon spheres—a component for carbon capture technology and for new ways of storing renewable energy—has been developed by Swansea University researchers. Carbon spheres range in size from nanometers to micrometers. at 0 °C and 2.9 at 0 °C and 2.9
Researchers from Huazhong University of Science and Technology in China and George Washington University in the US report in a new paper in the ACS journal Accounts of Chemical Research that a range of important carbon nanomaterials can be produced at high yield by molten carbonate electrolysis.
Researchers at the University of Ontario Institute of Technology are developing a new method to dissociate water vapor into hydrogen gas by microwave-generated plasma (plasmolysis). Hydrogen production has become the center of attention for carbon-free solution, and more attention has been given to clean methods of hydrogen production.
A development team from CoorsTek Membrane Sciences, in collaboration with international research partners, have successfully used ceramic membrane technology to develop a scalable hydrogen generator that makes hydrogen from electricity and fuels including natural gas, biogas and ammonia with near zero energy loss.
Scientists from ExxonMobil, University of California, Berkeley and Lawrence Berkeley National Laboratory have developed a new material that could capture more than 90% of CO 2 emitted from industrial sources using low-temperature steam, requiring less energy for the overall carbon capture process. UC Berkeley graphic by Eugene Kim).
As part of a larger £90 million (US$117 million) package of awards to cut carbon emissions in industry and homes, the UK is awarding £28 million (US$36.5 million) to five demonstration phase projects for low-carbon hydrogen production. HyNet – low carbon hydrogen plant. Contract value: £3.12 million (US$4.1 Contract value: £7.48
OXCCU, a company spun-out from the University of Oxford in 2021 that is focused on converting carbon dioxide and hydrogen into industrial and consumer products ( earlier post ), completed an £18-million (US$22.8 million) Series A financing round.
Researchers in Europe led by a team from ETH Zurich have designed a fuel production system that uses water, CO 2 , and sunlight to produce aviation fuel. We are the first to demonstrate the entire thermochemical process chain from water and CO 2 to kerosene in a fully-integrated solar tower system.
Researchers at Argonne National Laboratory have conducted life cycle analyses (LCAs) for battery-grade lithium carbonate (Li 2 CO 3 ) and lithium hydroxide monohydrate (LiOH•H 2 O) produced from Chilean brines (Salar de Atacama) and Australian spodumene ores. This information will help us achieve our goal of being carbon neutral by 2030.
The technology developed by the UBC researchers—thermal methane cracking (TMC)—can produce up to 200 kilograms of hydrogen a day using natural gas, without using water, while reducing or eliminating greenhouse gas emissions. Currently, hydrogen can cost up to $15 per kilogram. Image: MéridaLabs.
With clean hydrogen gaining recognition worldwide as a carbon-free fuel capable of making a significant contribution to addressing climate change, Southern California Gas Co. SoCalGas) will field test a new technology that can simultaneously separate and compress hydrogen from a blend of hydrogen and natural gas. Rhandi et al.
Inspired by naturally occurring processes, a team of Boston College chemists used a multi-catalyst system to convert carbon dioxide to methanol at the lowest temperatures reported with high activity and selectivity. It can be produced from hydrogen and carbon dioxide, mitigating greenhouse gas emissions and storing hydrogen in the process.
Texas-based fuel company Nacero ( earlier post ) will build its second low- and zero-carbon fuels plant in Newport Township, Pennsylvania. The new manufacturing facility will produce low- and zero-lifecycle carbon footprint gasoline blendstock made from natural gas and renewable natural gas.
million in funding for 12 projects as part of Phase 1 of the Advanced Research Projects Agency-Energy’s (ARPA-E’s) FLExible Carbon Capture and Storage (FLECCS) program. The team will use gas or liquid buffering tanks and tight thermal integration between the air separation unit and the oxy-combustion turbine. 8 Rivers Capital.
The LHM was produced from Vulcan’s sorption pilot plant, located at a geothermal renewable energy plant in the Upper Rhine Valley in Germany, with downstream electrolysis processing offsite, as per Vulcan’s planned commercial Zero Carbon Lithium Project. Earlier post.). 2 O and very low impurities.
BMW i Ventures has invested in Prometheus Fuels ( earlier post ), a company removing CO 2 from the air and turning it into zero-net carbon gasoline that it will sell at gas stations, at a price that competes with fossil fuels, starting as early as this year. The separation of ethanol and other fuel products from water.
Researchers at the University of Oregon have advanced the effectiveness of the catalytic water dissociation reaction in bipolar membranes. The technology behind bipolar membranes, which are layered ion-exchange polymers sandwiching a water dissociation catalyst layer, emerged in the 1950s. —Oener et al. —Shannon Boettcher.
a pioneer in natural gas decarbonization, recently raised $11.5 C-Zero’s technology, which was initially developed at the University of California, Santa Barbara, uses innovative thermocatalysis to split methane into hydrogen and solid carbon in a process known as methane pyrolysis. C-Zero Inc., cal/mol H 2 ) is slightly (.
Qiang Xu of Southern University of Science and Technology (SUSTech) have developed a promising method for carbon capture and storage using a single-crystalline guanidinium sulfate-based clathrate salt. Methane hydrate is studied for its ability to capture and trap gas molecules such as carbon dioxide under high pressure.
A team of researchers from Canada and the US has developed a system that quickly and efficiently converts carbon dioxide into simple chemicals via CO 2 electrolysis. The electrode architecture enables production of two-carbon products such as ethylene and ethanol at current densities just over an ampere per square centimeter.
Carbon Recycling International (CRI) and Johnson Matthey (JM) have agreed on a long-term exclusive catalyst supply agreement for the use of JM’s KATALCO methanol catalysts in CRI’s Emissions-To-Liquids (ETL) CO 2 -to-methanol plants. Conventional methanol production involves fossil feedstocks such as natural gas or coal.
FlyZero is the UK’s Aerospace Technology Institute (ATI) project aiming to realize zero-carbon emission commercial aviation by 2030. Funded by the Department for Business, Energy and Industrial Strategy, the project FlyZero began in early 2021 as an intensive research project investigating zero-carbon emission commercial flight.
Minneapolis-based Xcel Energy will work with Idaho National Laboratory to demonstrate a system that uses a nuclear plant’s steam and electricity to split water. This is a game-changer for both nuclear energy and carbon-free hydrogen production for numerous industries. Earlier post.) Prairie Island.
Nacero has licensed Topsoe TIGAS (Topsoe Improved Gasoline Synthesis) technology for its multi-billion USD natural-gas-to-gasoline facility in Penwell, Texas to produce 100,000 barrels per day of gasoline component ready for blending into US commercial grades. The captured CO 2 will be used for enhanced oil recovery.
The UK government is awarding £54 million to 15 projects to develop technologies that remove carbon emissions from the atmosphere. The funding comes under Phase 2 of the Direct Air Capture and Greenhouse Gas Removal technologies competition. The carbon dioxide can then be permanently stored or used in various products or applications.
The catalyst shows a carbon dioxide conversion through hydrogenation to hydrocarbons in the aviation jet fuel range of 38.2%, with a yield of 17.2%, and a selectivity of 47.8%, and with an attendant low carbon monoxide (5.6%) and methane selectivity (10.4%). Fe 5 C 2 by CO 2 /water in the first hours of the catalytic reaction.
By 2050, Cummins is targeting net-zero carbon emissions. Specific 2030 goals related to parts, products, and company-managed facilities and operations are: Reduce absolute greenhouse gas emissions from facilities and operations by 50% (science-based target). Reduce absolute water consumption in facilities and operations by 30%.
Allianz Capital Partners, on behalf of Allianz insurance companies, has signed an agreement to acquire a minority stake in Ren-Gas Oy , a green hydrogen and power-to-gas project developer based in Finland. Allianz will provide funding of €25 million to Ren-Gas to support the company’s project portfolio towards execution.
Audi is adding a new member to its A3 family: the A3 Sportback 30 g-tron natural gas vehicle. Operation with natural gas or biomethane makes the compact model economical and more climate-friendly with low emissions. With full gas tanks, the car has an NEDC range of up to 495 (307.6 The A3 Sportback 30 g-tron 1.5
The remaining carbon dioxide is stored in the tank and reused in onshore methanol production. According to the European Environment Agency (EEA), maritime transport is responsible for more than 3% of the total carbon emissions in the European Union. The researchers at Fraunhofer developed a ceramic membrane coated with carbon.
Ultra Safe Nuclear Corporation (USNC), a US-based vertical integrator of nuclear technologies and services, Hyundai Engineering and SK E&C are teaming up to conduct research and development for carbon-free hydrogen production.
Renault Group and Vulcan Energy Resources , a lithium developer targeting carbon-neutral lithium production ( earlier post ), have signed a lithium offtake term sheet. Vulcan’s Zero Carbon Lithium process flow sheet. Vulcan is aiming to become the first lithium producer with net-zero greenhouse gas emissions.
The e-Fuel plant is planned to produce CO 2 -neutral fuel by using green hydrogen and furnace gas from an existing factory. Aker Solutions is already a leading supplier to oil and gas companies globally and will continue to maintain this market position. The process starts when water vapor is broken down into hydrogen and oxygen.
Hyundai Motor Group will collaborate with the Saudi Arabian Oil Company (Aramco) and King Abdullah University of Science and Technology (KAUST) jointly to research and develop an advanced fuel for an ultra lean-burn, spark-ignition engine that aims to lower the overall carbon dioxide emissions of a vehicle.
With efficiencies above 90%, Topsoe’s proprietary SOEC electrolyzers offer superior performance in electrolysis of water into hydrogen—e.g., SOECs can be used for direct electrochemical conversion of steam (H 2 O), carbon dioxide (CO 2 ), or both into hydrogen (H 2 ), carbon monoxide (CO), or syngas (H 2 +CO), respectively.
The minimum 10-year deal will reduce lifecycle emissions by up to 340,647 metric tons of carbon dioxide per year, beginning with the first expected SAF deliveries in 2026. These changes eliminate the need for carbon sequestration and reduce the system’s feed-stock handling costs and complexity.
Airbus and a number of major airlines—Air Canada, Air France-KLM, easyJet, International Airlines Group, LATAM Airlines Group, Lufthansa Group and Virgin Atlantic—have signed Letters of Intent (LoI) to explore opportunities for a future supply of carbon removal credits from direct air carbon capture technology.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content