This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
If we can generate syngas from carbon dioxide utilizing only solar energy, we can use this as a precursor for methanol and other chemicals and fuels. To create a process that uses only solar energy, Mi’s group overcame the difficulty of splitting carbon dioxide molecules, which are among the most stable in the universe.
The US Department of Energy (DOE) Advanced Research Projects Agency - Energy (ARPA-E) will award up to $45 million in funding to support a new program aimed at facilitating the development of the marine carbon dioxide removal (mCDR) industry through scalable Measurement, Reporting and Validation (MRV) technologies.
Electrofuels provider Infinium and comprehensive carbon management company Navigator CO2 entered into a Memorandum of Understanding and long-term relationship for Navigator to deliver 600,000 tons per annum (TPA) of biogenic carbon dioxide from its Heartland Greenway system to a future Infinium facility for the production of electrofuels (eFuels).
Researchers from Huazhong University of Science and Technology in China and George Washington University in the US report in a new paper in the ACS journal Accounts of Chemical Research that a range of important carbon nanomaterials can be produced at high yield by molten carbonate electrolysis.
Mercedes-Benz AG is the first car manufacturer to take an equity stake in Swedish start-up H2 Green Steel (H2GS) as a way to introduce CO 2 free steel into series production. As a preferred partner of the start-up, we will be launching green steel in various vehicle models as early as 2025.
Audi’s latest e-fuels project is participation in a a pilot plant project in Dresden that produces diesel fuel from water, CO 2 and green electricity. The sunfire plant, which operates according to the “power-to-liquid” (PtL) principle, requires carbon dioxide, water and electricity as raw materials.
Johnson Matthey has launched HyCOgen, a technologyt designed to play a pivotal role in enabling the conversion of captured carbon dioxide (CO 2 ) and green hydrogen into sustainable aviation fuel (SAF).
Scientists from ExxonMobil, University of California, Berkeley and Lawrence Berkeley National Laboratory have developed a new material that could capture more than 90% of CO 2 emitted from industrial sources using low-temperature steam, requiring less energy for the overall carbon capture process. UC Berkeley graphic by Eugene Kim).
Stuart Licht have demonstrated the first facile high-yield, low-energy synthesis of macroscopic length carbon nanotubes (CNTs)—carbon nanotube wool—from CO 2 using molten carbonate electrolysis ( earlier post ). The most compact form of captured carbon is through its transformation to solid carbon.
Tests conducted by Titirici Group , a multidisciplinary research team based at Imperial College London, have found that a novel carbon nanotube electrode material derived from CO 2 —produced by Estonian nanotech company UP Catalyst ( earlier post )—enhances the cyclability of sodium-ion batteries. From every 3.7
The expansion of its Smart Carbon route, also utilizing hydrogen. Ultimately to reach zero, this hydrogen will need to be green (produced via electrolysis which is powered by renewable electricity). ArcelorMittal is therefore developing new facilities to produce green hydrogen using electrolyzers.
A team of researchers from Canada and the US has developed a system that quickly and efficiently converts carbon dioxide into simple chemicals via CO 2 electrolysis. The electrode architecture enables production of two-carbon products such as ethylene and ethanol at current densities just over an ampere per square centimeter.
LanzaTech UK and direct air capture technology company Carbon Engineering have partnered on a project to create sustainable aviation fuel (SAF) using atmospheric carbon dioxide (CO 2 ). Earlier post.).
Italy-based Snam, a leading energy infrastructure operator, and Saipem, an Italian multinational oilfield services company, have signed a Memorandum of Understanding to start working together to define and to develop initiatives for green hydrogen production and transport, and for carbon dioxide capture, transport and reuse or storage (CCS and CCU).
This project is part of CEMEX’s Future in Action program to reduce its carbon footprint and contribute to a circular economy and an integral component of CEMEX’s master plan to develop a carbon neutral operation at its Rüdersdorf cement plant by 2030. In the second phase , larger quantities of hydrogen are to be supplied by pipeline.
Partners of the P2X Kopernikus project on the premises of Karlsruhe Institute of Technology (KIT) in Germany have demonstrated the production of fuel from air-captured CO2 using—for the first time—a container-based test facility integrating all four chemical process steps needed to implement a continuous process.
University of Delaware engineers have demonstrated an effective way to capture 99% of carbon dioxide from the ambient air feed to an hydroxide exchange membrane fuel cell (HEMFC) air using a novel electrochemical system powered by hydrogen. As hydrogen is fed to the device, it powers the carbon dioxide removal process.
An international collaboration of scientists has taken a significant step toward the realization of a nearly “green” zero-net-carbon technology that can efficiently convert CO 2 and hydrogen into ethanol. There has been much work on carbon dioxide conversion to methanol, yet ethanol has many advantages over methanol.
Qiang Xu of Southern University of Science and Technology (SUSTech) have developed a promising method for carbon capture and storage using a single-crystalline guanidinium sulfate-based clathrate salt. Methane hydrate is studied for its ability to capture and trap gas molecules such as carbon dioxide under high pressure. Xiang et al.
Hassan, Tao Jiang, Khaled Nabil Salama, Zhonglin Wang and Jr-Hau He (2019) “Blue Energy Fuels: Converting Ocean Wave Energy to Carbon-Based Liquid Fuels via CO 2 Reduction” Energy & Environmental Science doi: 10.1039/C9EE03566D. Schematic of the ocean-wave-driven electrochemical CO 2 RR system for liquid fuel production.
student of the Graduate School of Science, have shown that the catalyst formate dehydrogenase reduces carbon dioxide directly to formic acid. The development of an effective catalyst is an important step in creating an artificial photosynthesis system that uses sunlight to convert carbon dioxide into organic molecules.
Their cost-effective synthesis procedure, coupled with the high stability of the photocatalyst, provides an economically feasible way to convert waste carbon dioxide and water into useful hydrocarbon fuels using sunlight. —Prof In. 2020.119344.
The catalyst shows a carbon dioxide conversion through hydrogenation to hydrocarbons in the aviation jet fuel range of 38.2%, with a yield of 17.2%, and a selectivity of 47.8%, and with an attendant low carbon monoxide (5.6%) and methane selectivity (10.4%). H 2 O) on catalytically active sites on ?-Fe Makgae, O.A.
The facility will filter 4,000 metric tons of carbon dioxide from the air and mineralize it underground. With direct air capture technology, carbon dioxide is extracted from the ambient air and air free of CO 2 is returned to the atmosphere. The carbon dioxide is thus permanently removed from the atmosphere.
BMW i Ventures has invested in Prometheus Fuels ( earlier post ), a company removing CO 2 from the air and turning it into zero-net carbon gasoline that it will sell at gas stations, at a price that competes with fossil fuels, starting as early as this year. —Greg Smithies, Partner, BMW i Ventures.
BMW Group and H2 Green Steel have signed a final contract on the delivery of CO 2 -reduced steel. H2 Green Steel is committed to the Scope 1, 2 and upstream Scope 3 requirements as defined in the GHG Protocol. The company has a gross embodied carbon emission intensity obligation per tonne of steel, included in its customer contracts.
More than 14 tonnes of CO 2 was saved in a two-year trial involving just 11 urban trucks and vans running on green hydrogen dual fuel. If deployed full time, the vehicles would not only save carbon but also provide improvements to local air quality.
Researchers at the National Institute of Standards and Technology (NIST) and their colleagues have demonstrated a room-temperature method that could significantly reduce carbon dioxide levels in fossil-fuel power plant exhaust, one of the main sources of carbon emissions in the atmosphere.
Lloyd Distinguished Service Professor in Economics, and José-Luis Cruz of Princeton University assesses the local social cost of carbon (LSCC) and how that cost aligns with the carbon reduction pledges countries made under the Paris Agreement. The price of carbon should then be set at this price, everywhere.
Electrochemical reduction of carbon dioxide (CO 2 ) is a promising approach to solve both renewable energy storage and carbon-neutral energy cycle. In order to improve the economic feasibility in applications, electrocatalytic CO 2 reduction with high activity, selectivity, and stability toward multi-carbon products should be realized.
The plant will produce carbon-neutral fuel—enough to decarbonize more than 400,000 vehicles annually. eFuels are produced by combining green hydrogen made from renewable power and recycled carbon dioxide. HIF’s facility in Texas will help remove 2 million tonnes of CO2 from the air every year. Earlier post.)
finds that private jets are 10 times more carbon-intensive than airliners on average, and 50 times more polluting than trains in terms of CO 2 emitted per passenger-km. The report, Private jets: can the super-rich supercharge zero emission aviation? 1 in 10 flights departing France are private jets, half of which travelled less than 500 km.
The electrocatalytic conversion of CO 2 using renewable energy could establish a climate-neutral, artificial carbon cycle. However, the electrocatalytic formation of products with two or more carbon atoms (C 2+ ) is very challenging. These could then be burned as needed. and Xiong, Y.
The researchers think that it could be recycling smokestack carbon dioxide into clean-burning fuel within 5-10 years. If we can generate green methane, it’s a big deal. Turning carbon dioxide into methane is a very difficult process. Turning carbon dioxide into methane is a very difficult process.
ADM and the University of Illinois announced the successful completion of the Illinois Basin - Decatur Project (IBDP), a carbon capture and storage (CCS) project designed to evaluate and test the technology at commercial scale. million metric tons of carbon dioxide. km pipeline, and injected into the Mt. million metric tons to date.
If these are achieved, carbon yield and productivity can be greatly accelerated (e.g., . … Therefore, meta-bolic engineers must ensure that (1) minimum cellular ATP requirement is met and (2) cells have ATP and reducing power in the right stoichiometry for desired product synthesis. each gram of acetogenic M.
Researchers at the Ulsan National Institute of Science and Technology (UNIST) have designed a membrane-free (MF) Mg-CO 2 battery as an advanced approach to sequester CO 2 emissions by generating electricity and value-added chemicals without any harmful by-products. A paper on the work is published in the journal Nano Energy.
Methane derived from CO 2 and renewable H 2 sources is an attractive fuel, and it has great potential as a renewable hydrogen carrier as an environmentally responsible carbon capture and utilization approach. 2021), “Integrated Capture and Conversion of CO2 to Methane using a Water-lean, Post-Combustion CO2 Capture Solvent.”
Yu and his team will take a unique approach that involves loading amine molecules into a porous material, such as carbon or silica, through which CO 2 can pass and get trapped. In addition to reducing carbon emissions, Yu believes this technology has the potential to generate clean energy in remote places or after natural disasters.
The new system mimics a natural chloroplast to convert carbon dioxide in water into methane, very efficiently using light. Photosynthesis is the process by which chloroplasts in plants and some organisms use sunlight, water and carbon dioxide to create food or energy. Resources Yu, J.,
On average, lithium sourced from hard rock spodumene sources requires an average 9t of CO 2 for every tonne of refined lithium carbonate equivalent (LCE) produced, nearly triple that of the average tonne of LCE from the brine sector.
20 nm) are selective toward the formation of carbon nanotubes (CNTs), while small Ni particle sizes (i.e., Solid carbon that accumulates on the catalyst is washed and separated for commercial use, while the metallic precursors are re-synthesized and recycled back into the reactor. Further, large Ni particle sizes (i.e., >20
Among other things, the carbon dioxide emissions are investigated during all product stages of the automobile: The emissions generated by the extraction of raw materials, the production of components, and the assembly are included in the production. The DKI is measured in tons of CO2 equivalent per vehicle. In 2015, the figure was 43.6
This will reduce the carbon footprint of our supply chain by 900,000 tonnes per year, while at the same time driving the transformation of the steel industry. The BMW Group already signed an agreement with Swedish startup H2 Green Steel in October of last year.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content