This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Using a hematite photocatalyst, a team led by researchers from Kobe University has succeeded in producing both hydrogen gas and hydrogen peroxide at the same time from sunlight and water. Hydrogen has gained attention as one of the possible next generation energy sources. under 600nm). Mesocrystal technology. Tachikawa et al.
Joseph Romm to discuss his then about to be released book, The Hype About Hydrogen, available now on Amazon. This is the second half of our conversation, lightly edited. continued] The post Beyond the Hydrogen Mirage: A Candid Conversation with Joe Romm appeared first on CleanTechnica.
An international collaboration of scientists has taken a significant step toward the realization of a nearly “green” zero-net-carbon technology that can efficiently convert CO 2 and hydrogen into ethanol. None of the three components examined in the study is able to individually catalyze the CO 2 -to-ethanol conversion, nor can they in pairs.
Following on the reveal of Renault Master Van H2-TECH last month ( earlier post ), HYVIA has unveiled two new HydrogenLight Commercial Vehicles prototypes with zero CO 2 tailpipe emissions, increased range, and 5-minute refueling time. Vehicle, e-motor and hydrogen integration are also made in France. kg) at 700 bar.
million to 10 industry-led projects to advance nuclear technologies, including two aimed at expanding clean hydrogen production with nuclear energy. A well-established downstream syngas-to-synfuel conversion process, such as Fischer-Tropsch synthesis, converts the syngas to liquid synfuel for a total projected cost of less than $4/gallon.
Researchers at the University of Southampton have transformed optical fibers into photocatalytic microreactors that convert water into hydrogen fuel using solar energy. The microstructured optical fiber canes (MOFCs) with photocatalyst generate hydrogen that could power a wide range of sustainable applications. Oakley, Richard P.
Rice University researchers and colleagues at Princeton and Syzygy Plasmonics have developed a plasmonic photocatalyst for the direct decomposition of hydrogen sulfide gas into hydrogen and sulfur, as an alternative to the industrial Claus process. A paper on the work appears in ACS Energy Letters. —Naomi Halas. Bayles, Henry O.
Transform Materials has developed a novel and sustainable microwave plasma reactor process to convert natural gas into high-value hydrogen and acetylene, thereby opening up a new pathway for green chemical manufacturing.
and Princeton University’s Andlinger Center for Energy and the Environment have created a scalable photocatalyst that can convert ammonia into hydrogen fuel. This result demonstrates the potential for highly efficient, electrically driven production of hydrogen from an ammonia carrier with earth-abundant transition metals.
The catalyst shows a carbon dioxide conversion through hydrogenation to hydrocarbons in the aviation jet fuel range of 38.2%, with a yield of 17.2%, and a selectivity of 47.8%, and with an attendant low carbon monoxide (5.6%) and methane selectivity (10.4%). In brief, the Fe–Mn–K catalyst shows a CO 2 conversion of 38.2%
The conversion normally requires significant amounts of energy in the form of high heat—a temperature of at least 700 ?C, Carbon monoxide readily combines with hydrogen to produce essential hydrocarbon compounds, such as methane and ethanol, that are often used in industry, said NIST researcher Renu Sharma.
At the Movin’On 2018 mobility summit in Montreal, hydrogen fuel-cell company Symbio intoduced a 40-kW fuel cell system—H2Motiv L—targeting range-extending conversion applications for heavy-duty electric vehicles. Symbio has a great deal of experience with using hydrogen fuel cells as range extenders. Earlier post.)
The optimized photo-electrochemical water splitting device uses light absorbers made of silicon arranged in closely packed pillars, dotted with tiny clusters of the new molybdenum sulfide catalyst. We show that bio-inspired molecular clusters based on molybdenum and sulphur evolve hydrogen at rates comparable to that of platinum.
By using light-activated quantum dots to fire particular enzymes within microbial cells, the researchers were able to create “living factories” that eat CO 2 and convert it into products such as biodegradable plastic, gasoline, ammonia and biodiesel. Therefore, these resting cells function as nano-microbial factories powered by light.
Neutron scattering analysis performed at ORNL shows the lamellar structure of a hydrogen-producing, biohybrid composite material formed by the self-assembly of naturally occurring, light harvesting proteins with polymers. This finding could be exploited for the introduction of self-repair mechanisms in future solar conversion systems.
A new study by Berkeley Lab researchers at the Joint Center for Artificial Photosynthesis ( JCAP ) shows that nearly 90% of the electrons generated by a new hybrid photocathode material designed to store solar energy in hydrogen are being stored in the target hydrogen molecules (Faradaic efficiency). Earlier post.) Earlier post.)
Researchers from the University of Houston (UH) have developed a cobalt(II) oxide (CoO) nanocrystalline catalyst that can carry out overall water splitting with a solar-to-hydrogen efficiency of around 5%. The generation of hydrogen from water using sunlight could potentially form the basis of a clean and renewable source of energy.
Sierra plans to retire a diesel locomotive and replace it with a zero-emission switching locomotive powered a 200 kW Ballard FCmove-HD fuel cell system and involving the integration of hydrogen storage together with advanced battery and systems control technologies.
Energy company SGH2 is bringing the world’s biggest green hydrogen production facility to Lancaster, California. SGH2’s gasification process uses a plasma-enhanced thermal catalytic conversion process optimized with oxygen-enriched gas.
million to projects to develop hydrogen refueling infrastructure in California ( PON-13-607 ). All projects funded under this solicitation must support the future deployment of FCVs and hydrogen internal combustion engine vehicles (HICEVs). 100% Renewable Hydrogen Refueling Station Competition. Mobile Refueler Competition.
The Dutch Institute for Fundamental Energy Research ( DIFFER ) is partnering with Toyota Motor Europe (TME) to develop a device that absorbs water vapor, and splits it into hydrogen and oxygen directly using solar energy. In this project, DIFFER and TME are exploring an innovative way to produce hydrogen directly out of humid air.
The California Energy Commission has awarded GTI and Sierra Northern Railway nearly $4,000,000 to fund the design, integration, and demonstration of a hydrogen fuel cell switching locomotive to support the Hydrogen Fuel Cell Demonstrations in Rail and Marine Applications at Ports (H2RAM) initiative.
Photocatalytic water splitting has attracted great interest as a means of cost-effective conversion of sustainable solar energy to valuable chemicals. The sources of error and standard reporting protocols for hydrogen evolution rate, light source calibration, and solar-to-hydrogen (STH) efficiency have been revisited and recommended.
Researchers from the University of Michigan and McGill University in Canada report photochemical syngas synthesis using a core/shell Au@Cr 2 O 3 dual cocatalyst in coordination with multistacked InGaN/GaN nanowires (NWs) with the sole inputs of CO 2 , water, and solar light. under concentrated solar light illumination.
Rice University nanoscientists have demonstrated a new catalyst that can convert ammonia into hydrogen fuel at ambient pressure using only light energy, mainly due to a plasmonic effect that makes the catalyst more efficient. Each molecule of ammonia contains one nitrogen and three hydrogen atoms.
A group of Japanese researchers has developed a novel photocatalyst for increased hydrogen production. The strontium titanate mesocrystal exhibits three times the efficiency for hydrogen evolution compared to conventional disordered systems in alkaline aqueous solution. Hydrogen synthesis in SrTiO 3 mesocrystals. (a)
Researchers at Japan’s National Institute of Advanced Industrial Science and Technology (AIST) have developed a tungsten oxide (WO 3 ) photocatalyst that provides a significantly higher quantum yield under visible light than conventional photocatalysts. a) Water decomposition by photocatalyst. (b)
Researchers from the Naval Air Warfare Center Weapons Division (NAWCWD) have developed an efficient three-step process for the conversion of cellulosic feedstocks to both a valuable chemical precursor and high-performance jet fuel blendstock. The hydrogenation proceeded with 96% chemoselectivity. Woodroffe & Harvey (2020).
Scientists from the Max Planck Institutes for Chemical Energy Conversion and Coal Research and from the research group Photobiotechnology at Ruhr-Universität Bochum (RUB) have discovered a way of increasing the efficiency of hydrogen production in microalgae by a factor of five by using a combined metabolic engineering approach.
Researchers from the US Department of Energy’s (DOE) Argonne National Laboratory have combined two membrane-bound protein complexes to perform a complete conversion of water molecules to hydrogen and oxygen. This part of the reaction, however, represents only half of the overall process needed for hydrogen generation.
A team led by researchers at the US Department of Energy’s Argonne National Laboratory has developed a new way to produce solar fuels by using completely synthetic bionano machinery to harvest light without the need for a living cell. The system produces hydrogen at a turnover of about 240 μmol of H 2 (μmol protein) −1 h –1 and 17.74
Researchers in Israel have designed a separate-cell photoelectrochemical (PEC) water-splitting system with decoupled hydrogen and oxygen cells for centralized hydrogen production. It addresses the challenges of designing, building, and optimizing the device for assessing large-scale hydrogen generation. Landman et al.
Towards this, Toshiba said it will further improve the conversion efficiency by increasing catalytic activity, with the aim of securing practical implementation in the 2020s. However, their low level of light utilization efficiency drags down the energy conversion efficiency, and practical application requires increased efficiency.
Hyzon Motors, a leading supplier of heavy-duty hydrogen-powered fuel cell electric vehicles, announced a non-binding memorandum of understanding (MoU) with Transform Materials, a provider of renewable hydrogen through its proprietary microwave reactor technology ( earlier post ). —Parker Meeks, Hyzon’s Chief Strategy Officer.
A team of scientists at the University of Cambridge has reported the light-driven photoreforming of cellulose, hemicellulose and lignin to H 2 using semiconducting cadmium sulfide quantum dots in alkaline aqueous solution. CdS is an inexpensive, visible-light-absorbing photocatalyst with a bulk electronic bandgap of around 2.4
Left, global light-duty fleet in the electric-favoring case; right, the hydrogen-favoring case. In both electric- and hydrogen-favoring cases, availability of low-carbon electricity and hydrogen prolonged the use of petroleum-fueled ICE vehicles. Top, without CCS and CSP; bottom, with CCS and CSP. Click to enlarge.
Researchers led by MIT professor Daniel Nocera have produced an “artificial leaf”—a solar water-splitting cell producing hydrogen and oxygen that operates in near-neutral pH conditions, both with and without connecting wires. light-to-electricity efficiency, respectively, and when illuminated with 1 sun of AM 1.5
A team at Osaka University in Japan has developed a new material based on gold and black phosphorus to harvest a broader spectrum of sunlight for water-splitting to produce hydrogen. The three-part composite maximizes both absorbing light and its efficiency for water splitting. The LTO surface is partly coated with gold nanoparticles.
They fabricated a highly efficient photocathode by spatially and functionally decoupling light absorption and catalytic activity. A group of researchers from the University of Twente’s MESA+ research institute are working on a solar-to-fuel device that produces hydrogen. — Vijselaar et al.
A research team has developed a new artificial photosynthesis device component with remarkable stability and longevity as it selectively converts sunlight and carbon dioxide into two promising sources of renewable fuels: ethylene and hydrogen. The device produced ethylene and hydrogen with unprecedented selectivity and for more than 24 hours.
A research group led by Associate Professor Takashi Tachikawa of Kobe University’s Molecular Photoscience Research Center has developed a strategy that greatly increases the amount of hydrogen produced from sunlight and water using hematite (??Fe The potential is based on the RHE (Reversible Hydrogen Electrode). Zhang et al.
Photoelectrochemical (PEC) water splitting based on solar energy is one promising approach for the production of green hydrogen. The novel photoanodes suppress the undesirable internal and external losses associated with photoelectrochemical water splitting, resulting in an unprecedented photon-to-current conversion efficiency of 12.79%.
A team from the University of Oxford (UK) and CNRS (France) has developed an optimized system for the photocatalytic production of hydrogen using an hydrogenase and photosensitizer co-attached to a TiO 2 nanoparticle. Armstrong (2009) Visible Light-Driven H 2 Production by Hydrogenases Attached to Dye-Sensitized TiO 2 Nanoparticles.
under various illumination conditions, showed impressive photosynthetic hydrogen and oxygen production for a device in which all active charge carriers originate from the decay of surface plasmons in the gold nanorods. Hydrogen production was clearly observable after ~2 h. —Martin Moskovits, professor of chemistry at UCSB.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content