Remove Commercial Remove Cost Of Remove Sodium Remove Study
article thumbnail

Argonne researchers find cathode material synthesis a key reason for performance degradation of sodium-ion batteries

Green Car Congress

One of the more promising candidates for batteries beyond the current standard of lithium-ion materials is the sodium-ion (Na-ion) battery. Na-ion is particularly attractive because of the greater abundance and lower cost of sodium compared with lithium. In addition, when cycled at high voltage (4.5

Sodium 433
article thumbnail

New long-duration, extended capacity Na-Al battery design for grid storage

Green Car Congress

Researchers led by the Department of Energy’s Pacific Northwest National Laboratory (PNNL) have extended the capacity and duration of sodium-aluminum batteries. The new sodium-based molten salt battery uses two distinct reactions. h is achieved with an estimated raw active materials cost of $7.02 of peak charge capacity.

article thumbnail

EaglePicher receives follow-on $3M award from ARPA-E to continue work on planar sodium-beta batteries

Green Car Congress

company, and a leading supplier of specialty batteries and energy storage solutions for the defense, aerospace, medical, commercial and grid energy storage markets, will receive a $3-million award from the Advanced Research Projects Agency-Energy to further develop their catalytic energy storage technology. Click to enlarge.

Sodium 218
article thumbnail

Industry study finds lead-acid to remain most wide-spread automotive energy storage for foreseeable future; new chemistries continue to grow

Green Car Congress

Overview of the three vehicle classes identified in the study, and their corresponding battery technologies. In any automotive application, regulatory decisions to phase out established battery technologies would impact negatively on overall vehicle performance and cost, according to the report. Click to enlarge.

Lead Acid 304
article thumbnail

Antimony nanocrystals as high-capacity anode materials for both Li-ion and Na-ion batteries

Green Car Congress

Initial studies revealed that antimony could be suitable for both rechargeable lithium- and sodium-ion batteries because it is able to store both kinds of ions. Sodium is regarded as a possible low-cost alternative to lithium as it is much more naturally abundant and its reserves are more evenly distributed on Earth.

Li-ion 220
article thumbnail

Alberta Innovates & NRCan awarding $26.2M to three oil sands clean tech projects; industry kicking in $43.3M

Green Car Congress

Alberta Innovates has teamed up with Natural Resources (NRCan) and industry partners to take three clean oil sands technologies to commercial demonstration. million in commercial demonstration in the three projects intended to reduce the greenhouse gas emissions of bitumen production and upgrading. million, for a total of $26.2

Oil-Sands 150
article thumbnail

ANL team develops new class of Li- and Na- rechargeable batteries based on selenium and selenium-sulfur; greater volumetric energy densities than sulfur-based batteries

Green Car Congress

Researchers at Argonne National Laboratory have developed selenium and selenium–sulfur (Se x S y )-based cathode materials for a new class of room-temperature lithium and sodium batteries. Unlike the widely studied Li/S system, both Se and Se x S y can be cycled to high voltages (up to 4.6 V) without failure. V higher for Li/S.

Recharge 220