This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
LeMond Composites, founded by three-time Tour de France champion Greg LeMond, has licensed a low-cost, high-volume carbonfiber manufacturing process developed at the US Department of Energy’s Oak Ridge National Laboratory (ORNL). Earlier post.)
The team projects that the high-efficiency vehicle will have a a minimum unit cost of only $1,400 to produce—the price of an average mountain bike—once the funding goal is reached. The VEGAN is a lightweight multipurpose hybrid electric-self-charging solar tricycle. The team has not yet produced a working demo for their concept.
million from the US Department of Energy (DOE) to develop and validate technology that will reduce the cost of manufacturing high-performance carbonfiber by 25% to make composite natural gas or hydrogen fuel tanks to power cars and trucks. The Institute for Advanced Composites Manufacturing Innovation (IACMI) will receive $2.7
LeMond Carbon announced the results of an independent technical audit conducted by Bureau Veritas (BV) of its carbonfiber manufacturing process. The audit was conducted on a pilot line at Deakin University’s Carbon Nexus facility in Geelong, Australia. This is a significant milestone for our company.
The projects will feature collaborations with EERE’s Advanced Manufacturing Office on manufacturing reliable and affordable electrolyzers and with EERE’s Vehicle Technologies Office on developing low-cost, high-strength carbonfiber for hydrogen storage tanks. Carbon Composite Optimization Reducing Tank Cost.
Department of Energy (DOE) grant to continue their research in developing low-cost, high-strength carbonfiber. The funding was part of DOE’s strategy to invest in discovery and development of novel, low-cost materials necessary for hydrogen storage and for fuel cells onboard light-duty vehicles.
Specifically, the funding will go toward reducing the production cost of carbonfiber manufacturing, to help in reducing the weight of vehicles; improved efficiency and lower costs for car batteries; and net-zero energy building technologies. ORNL will also receive $20.2
Ultimately, SpinLaunch’s Orbital Accelerator will accelerate a launch vehicle containing a satellite up to 5,000 miles per hour using a rotating carbon-fiber-arm within a 300-ft diameter steel vacuum chamber. After full review, NASA and SpinLaunch will publish all non-proprietary launch environment information from the test flight.
Researchers at the National Renewable Energy Laboratory (NREL) have shown that making carbonfiber composites with bio-based epoxies and an anhydride hardener makes the material fully recyclable by introducing linkages that are more easily degraded. Synthesizing carbonfiber involves temperatures of more than 1,000 °C.
RMX Technologies and the Department of Energy’s Oak Ridge National Laboratory have signed an exclusive licensing agreement for a new technology that significantly reduces the time and energy needed in the production of carbonfiber. Oxidation is the most time-consuming phase of the multistep carbonfiber conversion process.
Researchers at the Department of Energy’s Oak Ridge National Laboratory have demonstrated a production method they estimate will reduce the cost of carbonfiber as much as 50% and the energy used in its production by more than 60%. Details of the cost analysis will be shared with the prospective licensees.
Friend Family Distinguished Professor of Engineering, have been exploring the use of low-cost materials to create rechargeable batteries that will make energy storage more affordable. This magnified image shows aluminum deposited on carbonfibers in a battery electrode. A paper on the work is published in Nature Energy.
Ford and DowAksa are accelerating joint research to develop high-volume manufacturing techniques for automotive-grade carbonfiber, aiming to make vehicles lighter for greater fuel efficiency, performance and capability. Ford and Dow Chemical began working together in 2012 to develop low-cost, high-volume carbonfiber composites.
and Purdue University, has launched the first project selected with a dual focus on decreasing the cost of manufacture and increasing design flexibility for automotive composites. Multiple factors, including cost and design constraints, present barriers to the adoption of composites in high volume automotive applications.
Toyota’s targeted cost reductions in fuel cell vehicles. Design of the fuel cell system and hydrogen storage system plays a critical role in achieving the cost reduction, Yokoyama said. Toyota is also seeking to reduce the cost of fuel-cell system specific materials, through cooperation with materials manufacturers.
To date, efforts have been invested in developing carbonfibers, carbon electrodes, porous carbon foam/scaffolds, and carbon nanosheets from asphaltenes. Consequently, research on the valorization of asphaltenes has sparked over the past few years. —Saadi et al.
These conductivity-enhanced materials have the potential to lower the costs and impacts of adding renewables and electric cars to the grid, maximize next-generation energy storage technologies, and support electrification for energy-intensive sectors.
Materia of Pasadena, California will receive $2 million to reduce the cost of compressed hydrogen storage systems. The project will demonstrate a novel resin system that reduces the use of expensive carbonfiber composites for high pressure storage tanks. PPG Industries of Greensboro, North Carolina will receive $1.2
This project will develop a new process that enables low-cost, domestic manufacturing of magnesium. This project will develop a novel lowcost route to carbonfiber using a lignin/PAN hybrid precursor and carbonfiber conversion technologies leading to high performance, low-costcarbonfiber.
A team led by Dr. Stuart Licht at The George Washington University in Washington, DC has developed a low-cost, high-yield and scalable process for the electrolytic conversion of atmospheric CO 2 dissolved in molten carbonates into carbon nanofibers (CNFs.) —Stuart Licht.
Because emergency services require high levels of availability and have an unpredictable demand, retail electric motorcycles are unlikely to present a cost-effective solution. Existing electric motorcycles have been designed with the retail market in mind, and can be both expensive and slow to charge.
will optimize the cost and performance of composite cylinders for hydrogen storage using a graded construction. Current state-of-the-art hydrogen storage vessels for fuel cell electric vehicles are cost prohibitive because of the necessary carbonfiber. Composite Technology Development, Inc. Nextgen Aeronautics, Inc.
DOE’s Fuel Cell Technologies (FCT) Office would like feedback on the “ 2013 Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Final Report ”, with specific interest in which of the topics identified in the report are the most relevant to cost reduction at the hydrogen refueling station (forecourt).
As described in multiple DOE reports, the main barriers to widespread PEV commercialization are the cost; performance and life; and abuse tolerance of high?energy Specifically: the current cost of high?energy board charger must be offset by the cost savings in operational costs as seen by the customer. energy batteries.
A non-federal cost share of 20% is required for the projects. The FOA specifies two distinct technical topics: Reducing the Cost of Hydrogen Storage Tanks; and New Materials Discovery. Reducing the Cost of Hydrogen Storage Tanks. kWh to $6/kWh. Currently, high-pressure (i.e., less than 300 bar).
By the end of Phase II, Mainstream plans to demonstrate a production-ready prototype that exceeds DOE targets for fuel economy, operating range, and cost. Low-Cost, High-Energy Si/Graphene Anodes for Li-Ion Batteries. Composite Coatings for Low-Cost Motor Windings in Electric Vehicles. Nextech Materials.
The team projects that reasonable estimates for production costs and loss of performance due to system implementation result in total energy storage costs roughly 5 times cheaper than those for 700 bar tanks, potentially opening doors for increased adoption of hydrogen as an energy vector. wt% and 50 kgH 2 /m 3 for 5 kg of hydrogen.
For the near-term, the focus is on improving performance and lowering the cost of high-pressure compressed hydrogen storage systems. For light-duty vehicles this means providing a driving range of more than 300 miles (500 km), while meeting packaging, cost, safety, and performance requirements to be competitive with current vehicles.
Researchers from Nanjing Forestry University and the University of Maryland have designed high-performance microfibers by hybridizing two-dimensional (2D) graphene oxide (GO) nanosheets and one-dimensional (1D) nanofibrillated cellulose (NFC) fibers. Note that the infiltrated GO–NFC microfibers were also lightweight in nature.
Developing systems to enable lightweight, compact, and cost competitive hydrogen storage will help make hydrogen fuel cell systems competitive in a wide range of portable and stationary applications, and enable longer driving ranges for a wider variety of transportation applications. develop novel, advanced hydrogen storage technologies.
FCTO anticipates that the FOA may include the following Topic Areas: Topic Area 1: Reducing the Cost of Compressed Hydrogen Storage Systems. Topic 1 will focus on the development of complete, low-cost, compressed hydrogen storage systems. Topic Area 2: Improved Materials for Fiber Composites and Balance of Plant Components.
A Commercially Scalable Process for Silicon Anode Prelithiation his project will develop a cost- effective and scalable pre- lithiation process. Demonstration scale plasma oxidation of carbonfiber This project will scale up a carbonfiber oxidation technology that reduces energy consumption and oxidation time.
parts, leading to a more reliable, lighter, and cost effective. lower pressure and cost while increasing the performance of. materials for low-pressure gas storage tanks using their computational screening tool. materials for low-pressure gas storage tanks using their computational screening tool. while driving down cost.
are working to develop technology for producing carbonfiber at lowcost. A new heat-treatment process makes it possible to form steel tubes into complicated shapes while at the same time makes the tubes 150% stronger. Toray Industries Inc. and Teijin Ltd.
Topic areas include: Electrolyzer Manufacturing R&D (up to $15M): Lowering the cost of hydrogen produced from megawatt- and gigawatt-scale electrolyzers by improving large-scale, high-volume electrolyzer manufacturing in the US.
million for 30 new projects aimed at discovery and development of novel, low-cost materials necessary for hydrogen production and storage and for fuel cells onboard light-duty vehicles. Precursor Development for Low-Cost, High-Strength CarbonFiber. Hydrogen Storage Materials Discovery. GreenWay Energy, LLC.
DE-FOA-0000648 ) This funding will support the development of high-strength, lightweight carbonfiber composites and advanced steels and alloys that will help vehicle manufacturers improve the fuel economy of cars and trucks while maintaining and improving safety and performance.
This potential area would advance large-scale electrolyzer manufacturing in the US, focusing on manufacturing R&D to produce advanced components and systems for multi-megawatt-scale electrolyzers at high production volumes to lower hydrogen production costs. Advanced CarbonFiber for Compressed Hydrogen and Natural Gas Storage Tanks.
Fiscal year 2017 funding will also be targeted at the development of low-cost, high-strength precursors for carbonfibers that can be used in vehicular hydrogen storage vessels. Source: “2015 Fuel Cell Technologies Market Report” Click to enlarge.
Integrated Computational Materials Engineering (ICME) Development of LowCostCarbonFiber for Lightweight Materials. Projects will develop and integrate a suite of computational tools that can accurately predict precursors for lowcostcarbonfiber. Battery500 Seedling Projects.
The objective of this AOI is to accelerate the realization of lighter weight vehicle materials made from magnesium and carbonfiber capable of attaining 50% weight reduction of passenger vehicles. Subtopics include: Low-Cost Development of Magnesium. Development of Low-CostCarbonFiber.
The US Department of Energy (DOE) is awarding more than $55 million to 31 new projects to accelerate research and development of vehicle technologies that will improve fuel efficiency and reduce costs under a program-wide funding opportunity announced in January. (DE-FOA-0000991, DE-FOA-0000991, earlier post.) Description. Ford Motor Company.
The integrated 3D Hall sensor technology HallinOne allows 3-axis magnetic field measurement with one sensor chip, enabling low-cost contactless position measuring systems. EVE’s compact design is built on a tubular steel space frame housed within a carbonfiber body.
The awards range from $500,000 to $3 million and will provide small innovative companies with the staying power they need to develop the processes that are necessary to reduce the manufacturing costs for their products and enable manufacturing at scale. manufacturing base for permanent magnets. DOE Funding: $3,000,000. Dynalene, Inc.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content