This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
ion Ventures, a modern utility and energy storage infrastructure specialist, and LiNa Energy , a solid-state battery technology developer, concluded their first successful trial of LiNa’s proprietary solid-state sodium-nickel battery platform at an undisclosed location in South East England last week.
Sodium-ion batteries (SIBs), with the intrinsic advantages of resource abundance and geographic uniformity, are desired alternative battery technology to Li-ion batteries (LIBs) for grid-scale energy storage and transportation applications. A paper on their work is published in the journal, ACS Energy Letters.
UK-based Faradion, a developer of sodium-ion battery technology ( earlier post ), and Phillips 66 have launched a new technical collaboration to develop lower-cost and higher-performing anode materials for sodium-ion batteries. Earlier post.).
Solid-state sodium-ion battery company LiNa Energy has closed out a £3-million (US$3.4-million) LiNa’s battery cells utilize proven Sodium-Metal-Chloride chemistry in a planar design made possible with an ultra-thin solid ceramic electrolyte. million) late seed funding round, primarily from existing investors. Earlier post.)
Prototype sodium silicate hydrogen generation system as presented earlier this year at DOE merit review. The H300 utilizes real-time swappable cartridges that generate hydrogen on demand using SiGNa’s proprietary sodium silicide (NaSi) powder. Sodium-Silica-Gel: 2Na-SG + H 2 O → H 2 + Na 2 Si 2 O 5. Click to enlarge.
A team led by researchers from the University of Alberta (Canada) Scientists has developed a hybrid sodium-ion capacitor (NIC) using active materials in both the anode and the cathode derived entirely from peanut shells—a green and highly economical waste globally generated at more than 6 million tons per year. Batteries'
Researchers at Chalmers University of Technology, Sweden, have developed a nanometric graphite-like anode for sodium ion (Na + storage), formed by stacked graphene sheets functionalized only on one side, termed Janus graphene. The estimated sodium storage up to C 6.9 100 to 150 mA h g ? 100 to 150 mA h g ?1
Blackstone Technology GmbH may begin commercialization of 3D-printed solid-state sodium-ion batteries as early as 2025. Furthermore, the upscaling of sodium-based solid-state electrolytes on a ton scale is being developed in order to be able to produce them in the Blackstone Group from 2025.
Sodium-ion batteries (Na-ion, NIBs) are seen as an alternative to lithium-ion batteries for large-scale applications due to their lower cost and abundant supply of sodium. Yissum is the technology transfer company of the University. The novel anode is based on a new coating technology, also invented by Prof.
Researchers at the University of Texas, including Dr. John Goodenough, are proposing a strategy for high-capacity next-generation alkali (lithium or sodium)-ion batteries using water-soluble redox couples as the cathode. The present sodium-sulfur battery operates above 300 °C. Example of a lithium-water rechargeable battery.
Solid-state sodium battery company LiNa Energy ( earlier post ) has closed out a £3.5-million LiNa Energy, a spin-out from Lancaster University, established in 2017, is commercializing a safe, cobalt- and lithium-free solid-state sodium battery. Now with over 20 staff, LiNa Energy works at the cutting-edge of battery technology.
Building on earlier work, researchers in China have fabricated a hierarchical metal-organic nanocomposite for use as a cathode in sodium-ion batteries (SIBs). 2017) “In-Situ Formed Hierarchical Metal-Organic Flexible Cathode for High-Energy Sodium-Ion Batteries” ChemSusChem doi: 10.1002/cssc.201701484. and Huang, Y. 201701484.
The first international “Science Award Electrochemistry” from BASF and Volkswagen ( earlier post ) goes to Dr. Naoaki Yabuuchi, Tokyo University of Science, Institute for Science and Technology, Tokyo, Japan. The award is endowed with prize money of €50,000 (US$65,000).
Researchers at Isfahan University of Technology (Iran) report the efficient production of cellulosic ethanol from rice straw using a new sodium carbonate pretreatment method. Rice straw was treated with sodium carbonate (Na 2 CO 3 )prior to enzymatic hydrolysis and fermentation. and 1 M sodium carbonate solution.
Xcel Energy has released the preliminary results from its wind-to-battery (W2B) storage project in Minnesota, and termed the technology successful. In October 2008, Xcel began testing a one-megawatt sodium-sulfur (NaS) battery ( earlier post ) to demonstrate its ability to store wind energy and move it to the electricity grid when needed.
The US Department of Energy’s Advanced Research Projects Agency-Energy (ARPA-E) has selected 19 new projects to receive a total of $43 million to develop breakthrough energy storage technologies and support promising small businesses. Utah State University. Utah State University will develop electronic hardware and. Description.
A paper on their work was published 1 June in the ACS journal Environmental Science & Technology. A number of technologies have been employed for the capture and disposal of SO 2 from a flue gas stream. Linkous, Olawale Adebiyi and Ali T-Raissi (2010) Hydrogen Production via Photolytic Oxidation of Aqueous Sodium Sulfite Solutions.
in partnership with Kyoto University, has developed a lower temperature molten-salt rechargeable battery that promises to cost only about 10% as much as lithium ion batteries. The new battery uses sodium-containing substances melted at a high temperature. The company and the university have applied for patents.
A team from the University of Technology, Sydney (Australia) and Gyeongsang National University (S. Korea) have developed SnO2 @graphene nanocomposites for use as anodes in sodium-ion (Na-ion) batteries. The material also demonstrated a good high rate capability for reversible sodium storage. —Su et al.
A team from the Max Planck Institute for Solid State Research in Stuttgart and the University of Science and Technology of China, Hefei, has developed a high-power, high-capacity sodium battery with 96% capacity retention after 2,000 cycles. A paper on their work is published in the journal Advanced Materials. —Zhu et al.
Stanford researchers have developed a sodium-ion battery (SIB) that can store the same amount of energy as a state-of-the-art lithium ion, at substantially lower cost. The rise of renewable solar and wind power is demanding sustainable storage technologies using components that are inexpensive, Earth-abundant and environmental friendly.
The projects, led by universities, private companies, and national laboratories, were selected to develop technologies to advance UNF recycling, reduce the volume of high-level waste requiring permanent disposal, and provide safe domestic advanced reactor fuel stocks. Earlier post.) Award amount: $2,659,677). Award amount: $1,580,774).
The condensed battery integrates a range of innovative technologies, including the unspecified ultra-high energy density cathode materials, innovative anode materials, separators, and manufacturing processes, offering excellent charge and discharge performance as well as good safety performance.
Researchers at King Abdullah University of Science and Technology (KAUST) in Saudi Arabia have developed a continuous electrically-driven membrane process which successfully enriches lithium from seawater samples of the Red Sea by 43,000 times (i.e., 13000 ppm of sodium, magnesium, calcium, and potassium ions, among others).
British battery R&D company Faradion has demonstrated a proof-of-concept electric bike powered by sodium-ion batteries at the headquarters of Williams Advanced Engineering, which collaborated in the development of the bike. Oxford University was also a partner. Sodium-ion intercalation batteries—i.e., Earlier post.)
Australia-based Sparc Technologies has entered into a strategic partnership agreement with the Queensland University of Technology (QUT). We will be targeting the production of materials for the high growth market of sodium-ion batteries which is displaying significant promise as an alternative to lithium-ion batteries.
Natron Energy , a developer of new battery cell technology based on Prussian Blue analogue electrodes and a sodium-ion electrolyte, has closed a strategic investment by Chevron Technology Ventures (CTV) to support the development of stationary energy storage systems for demand charge management at electric vehicle (EV) charging stations.
Researchers at the University of Tokyo have developed a battery based on the concept of a combination of a perovskite-type cathode and a low-electrode-potential anode that can achieve high energy densities through the use of organic rather than aqueous electrolytes. Earlier post.). —Hibino et al. under milder conditions than usual.
Friedrich Schiller University Jena (FSU) and the Fraunhofer Institute for Ceramic Technologies and Systems Hermsdorf / (IKTS) are launching the new Center for Energy and Environmental Chemistry (CEEC) at Jena in Germany.
Three MIT-led research teams have won awards from the Department of Energy’s Nuclear Energy University Programs ( NEUP ) initiative to support research and development on the next generation of nuclear technologies. Fluoride-salt High-Temperature Reactor.
The awards are being made to companies and universities across New York that are involved in advanced research and development of energy storage applications that could benefit transportation, utility Smart Grid applications, renewable energy technologies, and other industries. Technology Development: $3.2 Cornell University.
Engineers at the McKelvey School of Engineering at Washington University in St. Wittcoff Distinguished University Professor and corresponding author. The key to improving any existing fuel cell technology is reducing or eliminating side reactions. —Vijay Ramani, the Roma B. and Raymond H. Zhongyang Wang, lead author.
After years of anticipation, sodium-ion batteries are starting to deliver on their promise for energy storage. Sodium-ion batteries just don't have the oomph needed for EVs and laptops. At about 285 Wh/kg, lithium-ion batteries have twice the energy density of sodium, making them more suitable for those portable applications.
The UK government-backed Technology Strategy Board (TSB) will invest more than £12 million (US$19.4 million) in 22 studies and projects to develop new technology that will speed up the reduction of CO 2 emissions from road vehicles. John Laughlin, the Technology Strategy Board’s Low Carbon Vehicles program manager.
Tesla China battery cell supplier Contemporary Amperex Technology Co. CATL) unveiled its sodium-ion battery earlier today, along with a solution that could integrate the cells with lithium-ion batteries in a single pack. Abraham , a research professor at Northeastern University. in early trading hours on Thursday.
The New York State Energy Research and Development Authority (NYSERDA) has awarded $250,000 to each of eight companies and research centers to develop working prototypes for a wide range of energy-storage technologies. The recipients are all members of the NY Battery and Energy Storage Technology ( NY-BEST ) Consortium.
ARPA-E selected the following 12 teams from universities, national laboratories and the private sector to address and remove key technology barriers to EV adoption by developing next-generation battery technologies: 24M Technologies will develop low-cost and fast-charging sodium metal batteries with good low-temperature performance for EVs.
A spin-off from the University of Amsterdam (UvA), Yellow Diesel B.V. , is commercializing a reactor technology based on heterogeneous catalysis for the production of high-quality biodiesel plus a cosmetics/food grade glycerol, with practically no waste streams. the holding company of the University of Amsterdam.
The new projects in four focus areas join the existing Faraday Institution research projects that collectively aim to deliver the organisation’s mission to accelerate breakthroughs in energy storage technologies to benefit the UK in the global race to electrification. CATMAT will be led by Professor Saiful Islam of the University of Bath.
Researchers at the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University with collaborators at the University of Oregon and Manchester Metropolitan University have developed a seawater-resilient bipolar membrane electrolyzer. Resources D.H. Marin, J.T. Perryman et al. 2023.03.005
A team from the University of Wollongong (Australia) and the University of Technology, Sydney reported the successful synthesis by a simple hydrothermal approach of high-capacity WS 2 (tungsten disulfide)@graphene nanocomposite anodes for sodium-ion batteries. Schematic diagram of the WS2@graphene nanocomposites.
Researchers at Vanderbilt University have demonstrated that ultrafine sizes (∼4.5 nm, average) of iron pyrite (FeS 2 ) nanoparticles are advantageous to sustain reversible conversion reactions in sodium ion and lithium ion batteries. A paper on their work is published in the journal ACS Nano.
Analysis by researchers at the Helmholtz Institute Ulm (HIU) of the Karlsruhe Institute of Technology (KIT) suggests that, given the foreseen scaling of battery demand up to 2050, each may face supply risks, albeit for different reasons. Passerini (2018) “A cost and resource analysis of sodium-ion batteries“ Nat. —Vaalma et al.
E) will award $39 million in funding to 16 projects across 12 states to develop market-ready technologies that will increase domestic supplies of critical elements required for the clean energy transition. Specifically, the program investigates the potential CO 2 -reactive ores to unlock net-zero or net-negative emission technologies.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content