This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
ion Ventures, a modern utility and energy storage infrastructure specialist, and LiNa Energy , a solid-state battery technology developer, concluded their first successful trial of LiNa’s proprietary solid-state sodium-nickel battery platform at an undisclosed location in South East England last week.
UK-based Faradion, a developer of sodium-ion battery technology ( earlier post ), and Phillips 66 have launched a new technical collaboration to develop lower-cost and higher-performing anode materials for sodium-ion batteries. Earlier post.).
Researchers led by the Department of Energy’s Pacific Northwest National Laboratory (PNNL) have extended the capacity and duration of sodium-aluminum batteries. The new sodium-based molten salt battery uses two distinct reactions. h is achieved with an estimated raw active materials cost of $7.02 of peak charge capacity.
F 0.7 , for sodium-ion (Na-ion) batteries (NIBs). While high-energy Li-ion batteries (LIBs) are expected to contribute in part to the solution, the high cost and low stability prohibit wide application in this area, the researchers observe. Ragone plot for the new Na 1.5 cathode and other cathode materials for NIBs.
Stationary energy storage systems that can operate for many cycles, at high power, with high round-trip energy efficiency, and at lowcost are required. Existing energy storage technologies cannot satisfy these requirements. Cost is a greater concern. It fits perfectly— really, really nicely. —Yi Cui.
Researchers at Chalmers University of Technology, Sweden, have developed a nanometric graphite-like anode for sodium ion (Na + storage), formed by stacked graphene sheets functionalized only on one side, termed Janus graphene. The estimated sodium storage up to C 6.9 100 to 150 mA h g ? 100 to 150 mA h g ?1
John Goodenough, are proposing a strategy for high-capacity next-generation alkali (lithium or sodium)-ion batteries using water-soluble redox couples as the cathode. The present sodium-sulfur battery operates above 300 °C. A = lithium or sodium (Li or Na), M represents a metal and 1 ≤ n < z. —Lu et al.
Sodium-ion batteries (Na-ion, NIBs) are seen as an alternative to lithium-ion batteries for large-scale applications due to their lower cost and abundant supply of sodium. However, low capacity and poor rate capability of existing anodes have been major obstacles to the commercialization of NIBs. —Yu et al.
Natron Energy , a developer of new battery cell technology based on Prussian Blue analogue electrodes and a sodium-ion electrolyte, has closed a strategic investment by Chevron Technology Ventures (CTV) to support the development of stationary energy storage systems for demand charge management at electric vehicle (EV) charging stations.
The US Department of Energy’s Advanced Research Projects Agency-Energy (ARPA-E) has selected 19 new projects to receive a total of $43 million to develop breakthrough energy storage technologies and support promising small businesses. battery sensor technologies fail to identify. Strain Estimation Technology for Lithium-Ion Batteries.
Building on earlier work, researchers in China have fabricated a hierarchical metal-organic nanocomposite for use as a cathode in sodium-ion batteries (SIBs). 2017) “In-Situ Formed Hierarchical Metal-Organic Flexible Cathode for High-Energy Sodium-Ion Batteries” ChemSusChem doi: 10.1002/cssc.201701484. and Huang, Y. 201701484.
Stanford researchers have developed a sodium-ion battery (SIB) that can store the same amount of energy as a state-of-the-art lithium ion, at substantially lower cost. Thus, further research is required to find better sodium host materials. The sodium salt makes up the cathode; the anode is made up of phosphorous.
British battery R&D company Faradion has demonstrated a proof-of-concept electric bike powered by sodium-ion batteries at the headquarters of Williams Advanced Engineering, which collaborated in the development of the bike. Sodium-ion intercalation batteries—i.e., Oxford University was also a partner. Earlier post.)
million in EPIC funding to 75 projects statewide to help California entrepreneurs bring early-stage clean energy technologies to market. The battery-related projects are: Coreshell Technologies : Thin-film battery electrode coating technology for lower costs and doubled battery life. Since 2017, CalSEED has awarded $12.4
After years of anticipation, sodium-ion batteries are starting to deliver on their promise for energy storage. Sodium-ion batteries just don't have the oomph needed for EVs and laptops. At about 285 Wh/kg, lithium-ion batteries have twice the energy density of sodium, making them more suitable for those portable applications.
Researchers from Ulsan National Institute of Science and Technology (UNIST) in Korea and Karlsruher Institute of Technology in Germany have developed a novel energy conversion and storage system using seawater as a cathode. Similarly, sodium has recently attracted attention as a replacement for lithium in alkali-metal-air batteries.
Overview of the three vehicle classes identified in the study, and their corresponding battery technologies. Their lowcost and ability to start the engine at cold temperatures sets them apart in conventional and basic micro-hybrid vehicles, and as auxiliary batteries in all other automotive applications, according to the report.
ARPA-E selected the following 12 teams from universities, national laboratories and the private sector to address and remove key technology barriers to EV adoption by developing next-generation battery technologies: 24M Technologies will develop low-cost and fast-charging sodium metal batteries with good low-temperature performance for EVs.
Haldor Topsøe A/S, a global market leader in catalysis and related process technologies, recently acquired 18% of the shares in sodium-ion battery technology company Faradion Ltd, based in Sheffield, UK. Other partners in the investment included Finance Yorkshire’s Seedcorn Fund and Rising Stars Growth Fund II LP.
has signed a definitive agreement to purchase EaglePicher Technologies LLC, a wholly owned subsidiary of EaglePicher Corporation, for $171.9 EaglePicher is also actively pursuing opportunities that would leverage its advanced power storage technologies to serve the rapidly growing alternative energy market. OM Group, Inc.,
The UK government-backed Technology Strategy Board (TSB) will invest more than £12 million (US$19.4 million) in 22 studies and projects to develop new technology that will speed up the reduction of CO 2 emissions from road vehicles. John Laughlin, the Technology Strategy Board’s Low Carbon Vehicles program manager.
The platform technology is also being commercialized for conversion of waste brines to chemicals and desalinated water. Mangrove also says that its technology can reduce lithium hydroxide production costs from lithium brines by as much as 45%. Mangrove plans to leverage technology platform advancements made possible with $7.1
The US Department of Energy’s (DOE) Fuel Cell Technologies (FCT) Program will award up to $12 million to advance hydrogen storage technologies. A non-federal cost share of 20% is required for the projects. greater than 600 ksi ultimate tensile strength) that have costs significantly lower than currently available [1].
The awards are being made to companies and universities across New York that are involved in advanced research and development of energy storage applications that could benefit transportation, utility Smart Grid applications, renewable energy technologies, and other industries. Technology Development: $3.2 Impact Technologies.
nm, average) of iron pyrite (FeS 2 ) nanoparticles are advantageous to sustain reversible conversion reactions in sodium ion and lithium ion batteries. FeS 2 is particularly attractive for energy storage technology due to its earth abundance, low toxicity, and low raw material cost. … —Anna Douglas.
The awardees went through a rigorous process including a review with CalSEED’s curated technical advisory committee, who volunteered their time and expertise to select the most promising future clean energy technologies. This novel technology would deliver safe, reliable, resilient, and cost-effective electric power in the grid.
Reliance New Energy Solar Ltd, a wholly owned subsidiary of Reliance Industries Ltd, will acquire 100% shareholding in sodium-ion battery developer Faradion Limited ( earlier post ) for an enterprise value of £100 million (US$135 million). Sodium is the sixth-most abundant element on the planet. Fast charge/ discharge capability.
CASCADE (Cathode and Anode Supply Chain for Advanced DEmonstrator)—led by Echion Technologies Ltd. This latest round of Faraday Battery Challenge funding will be shared across 17 projects being undertaken by businesses and research institutions across the UK.
Analysis by researchers at the Helmholtz Institute Ulm (HIU) of the Karlsruhe Institute of Technology (KIT) suggests that, given the foreseen scaling of battery demand up to 2050, each may face supply risks, albeit for different reasons. Passerini (2018) “A cost and resource analysis of sodium-ion batteries“ Nat. Resources.
The new projects in four focus areas join the existing Faraday Institution research projects that collectively aim to deliver the organisation’s mission to accelerate breakthroughs in energy storage technologies to benefit the UK in the global race to electrification. Next generation sodium ion batteries–NEXGENNA.
Natron Energy, a developer of new battery cell technology based on Prussian Blue analogue electrodes and a sodium-ion electrolyte, has ( earlier post ), has been awarded a $3-million grant by the California Energy Commission (CEC) for “Advanced Energy Storage for Electric Vehicle Charging Support.”
The US Department of Energy is awarding $620 million for projects around the country to demonstrate advanced Smart Grid technologies and integrated systems. These technologies are estimated to improve the reliability and efficiency of the distribution system 30-40%. Center for the Commercialization of Electric Technologies (TX).
Nickel offers relatively lowcost, wide availability and low toxicity compared to other key battery materials, such as cobalt. The PNNL researchers have developed a process to grow high-performance crystals in molten salts—sodium chloride, common table salt—at high temperature.
Total has signed a research agreement with the Massachusetts Institute of Technology (MIT) to develop new stationary batteries that are designed to enable the storage of solar power. The ARPA-E award is supported the development of the liquid metal grid-scale battery for low-cost, large scale storage of electrical energy.
For example, solar-storage integrated systems require lifetimes matching solar cells (30 years), electric vehicles require a high power and capacity, and grid storage requires an extreme lowcost. —Cohn et al. (a) a) First five galvanostatic charge−discharge profiles at current density of 0.2 Credit: ACS, Cohn et al. 5b04187.
However, while a number of potential technologies for EES exist, and some have been applied or demonstrated, they face either challenges in meeting the performance and economic matrix for the stationary applications, or limits in environment, site selection, and so on, Yang et al. In their study, Yang et al. Credit: ACS, Yang et al.
Vehicle Technologies (5 projects). Eagle Picher, in partnership with the Pacific Northwest National Laboratory, will develop a new generation of high energy, lowcost planar liquid sodium beta batteries for grid scale electrical power storage applications. Biomass Energy (5 projects). Carbon Capture (5 projects).
Example technologies specifically of interest, either as standalone solutions or in combination, include, but may not be limited to the following: Cell chemistries that can be packaged in pouch, prismatic or cylindrical formats and that have a nominal (Open Circuit) voltage ranging from 2.0 Oxide-based anodes.
The Center for Electrochemical Energy Storage Ulm & Karlsruhe ( CELEST ), the largest German research platform for electrochemical, comprising research into Li-ion batteries, post-Li technologies, fuel cells, and redox-flow batteries, has begun operation. A high priority of CELEST will also be the education of young scientists.
Skyonic Corporation, developer of the SkyMine mineralization process which can serve as a potential replacement for existing scrubber technology ( earlier post ), recently awarded the $117M construction contract for the Capitol SkyMine plant in San Antonio, Texas, to Toyo-Thai-USA Corporation (TTUS).
A team from the University of Science and Technology Beijing is proposing a new super-valent battery based on aluminium ion intercalation and deintercalation. Sodium-ion and magnesium-ion batteries, as new energy storage systems in portable devices, have attracted much attention of the investigators. Wang et al. Click to enlarge.
Professor Patrik Johansson from the Chalmers University suggests the usd of abundant aluminum for a sustainable battery technology that directly addresses the need of low-cost concepts. Sustainable technologies should make it possible to store power from the grid and feed power back into it.
lithium, sodium or potassium) on a copper–carbon cathode current collector at a voltage of more than 3.0 Finally, sodium is cheaper than lithium and widely available from the oceans, which makes a sodium battery preferable to a lithium battery, but insertion hosts for Na + have lower capacities than insertion hosts for Li +.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content