Remove Hydrogen Remove Solar Remove Universal Remove Water
article thumbnail

Sparc Hydrogen to test photocatalytic water splitting (PWS) reactor at CSIRO

Green Car Congress

The Sparc Green Hydrogen process combines concentrated solar (CS) with photocatalytic water splitting. The company’s key development allows for reduced photocatalyst use and integration with existing concentrated solar systems. The facility is home to Australia’s largest solar thermal research hub.

Water 396
article thumbnail

DOE awards $2.7M to U Florida, Synhelion to support production of hydrogen from concentrated solar

Green Car Congress

Synhelion and its partner the University of Florida announced that their joint project has been awarded US$2.7 million from the US Department of Energy Solar Energy Technologies Office (SETO). Close-up of Synhelion’s proprietary solar receiver, which delivers high-temperature process heat beyond 1,500 °C.

Florida 195
article thumbnail

Photocatalytic optical fibers convert water into hydrogen

Green Car Congress

Researchers at the University of Southampton have transformed optical fibers into photocatalytic microreactors that convert water into hydrogen fuel using solar energy. The microstructured optical fiber canes (MOFCs) with photocatalyst generate hydrogen that could power a wide range of sustainable applications.

Water 371
article thumbnail

Monash study on solar-driven electrolysis for green hydrogen production cautions on life-cycle emissions and EROI

Green Car Congress

Researchers at Monash University in Australia have conducted a lifecycle analysis and net energy analysis (LCA/NEA) of a hypothetical large-scale solar-electrolysis plant for the production of green hydrogen. Taking IRENA’s REmap scenario as a reference, renewable hydrogen could deliver 5% of total final energy demand in 2050.

Solar 459
article thumbnail

Rice U team creates low-cost, high-efficiency integrated device for solar-driven water splitting; solar leaf

Green Car Congress

Rice University researchers have created an efficient, low-cost device that splits water to produce hydrogen fuel. The platform developed by the Brown School of Engineering lab of Rice materials scientist Jun Lou integrates catalytic electrodes and perovskite solar cells that, when triggered by sunlight, produce electricity.

Low Cost 243
article thumbnail

Kobe team’s hematite mesocrystal photocatalyst simultaneously produces hydrogen and hydrogen peroxide

Green Car Congress

Using a hematite photocatalyst, a team led by researchers from Kobe University has succeeded in producing both hydrogen gas and hydrogen peroxide at the same time from sunlight and water. Hydrogen has gained attention as one of the possible next generation energy sources. under 600nm). Tachikawa et al.

Hydrogen 415
article thumbnail

New catalyst synthesis method for solar water splitting to produce hydrogen

Green Car Congress

A research team led by Daegu Gyeongbuk Institute Of Science And Technology (DGIST) Professor Jong-Sung Yu in Korea, with colleagues at UC Berkeley and Xi’an Jiaotong University in China, has successfully developed a new catalyst synthesis method that can efficiently decompose water into oxygen and hydrogen using solar light.

Water 268