Remove Hydrogen Remove Resource Remove Water
article thumbnail

China team develops highly active catalyst for hydrogen production from methanol-water

Green Car Congress

Methanol–water reforming could prove to be a promising solution for hydrogen production/transportation in stationary and mobile hydrogen applications. MoC catalyst which exhibits extraordinary hydrogen production activity in the aqueous-phase methanol reforming reaction. Under optimized conditions, Ni/?-MoC 0c10776.

Ni-Li 382
article thumbnail

Ontario researchers develop new water plasmolysis method for production of hydrogen

Green Car Congress

Researchers at the University of Ontario Institute of Technology are developing a new method to dissociate water vapor into hydrogen gas by microwave-generated plasma (plasmolysis). A) An experimental setup for full microwave hydrogen production and (b) Schematic of the plasma reactor placed inside the microwave. Chehade et al.

Water 368
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Photocatalytic optical fibers convert water into hydrogen

Green Car Congress

Researchers at the University of Southampton have transformed optical fibers into photocatalytic microreactors that convert water into hydrogen fuel using solar energy. The microstructured optical fiber canes (MOFCs) with photocatalyst generate hydrogen that could power a wide range of sustainable applications. Potter, Daniel J.

Water 371
article thumbnail

Researchers produce green syngas using CO2, water and sunlight

Green Car Congress

Researchers from the University of Michigan and McGill University in Canada report photochemical syngas synthesis using a core/shell Au@Cr 2 O 3 dual cocatalyst in coordination with multistacked InGaN/GaN nanowires (NWs) with the sole inputs of CO 2 , water, and solar light. Image credit: Roksana Rashid, McGill University.

Water 504
article thumbnail

Study finds direct seawater splitting has substantial drawbacks to conventional water splitting, offers almost no advantage

Green Car Congress

A study by a team of researchers from Technische Universität Berlin (TUB) and Fritz-Haber-Institut der Max-Planck-Gesellschaft has found that direct seawater splitting for hydrogen production has substantial drawbacks compared to conventional water splitting and offers almost no advantage. Diess et al.

Water 497
article thumbnail

UNIST team develops novel hydrogen production process using biomass oxidation instead of water oxidation as electron source

Green Car Congress

Korea’s Ulsan National Institute of Science and Technology (UNIST) have developed a novel process for the production of hydrogen using various types of biomass, including lignin, as an efficient alternative to water oxidation as an electron source. Conventionally, water is considered a cheap and clean source of electrons; 2H 2 O ?

Water 371
article thumbnail

ABB and Hydrogen Optimized expand hydrogen partnership, including a strategic investment

Green Car Congress

ABB and Canada-based Hydrogen Optimized have signed an agreement to expand the companies’ existing strategic relationship. KEY), the parent company of HOI, as they seek to accelerate the fast-emerging green hydrogen production segment with unique large-scale architecture. This includes an investment by ABB into Key DH Technologies Inc.

Hydrogen 465