This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
ion Ventures, a modern utility and energy storage infrastructure specialist, and LiNa Energy , a solid-state battery technology developer, concluded their first successful trial of LiNa’s proprietary solid-state sodium-nickel battery platform at an undisclosed location in South East England last week.
Researchers at Ariel University in Israel have developed a new type of hydrogen generator for “on-demand” use with fuel cells. Hydrogen is produced in a catalytic hydrolysis reaction of sodium borohydride (NaBH 4 ) with ruthenium powder as a catalyst. Zakhvatkin et al. 1c00367.
Sodium-ion batteries (SIBs), with the intrinsic advantages of resource abundance and geographic uniformity, are desired alternative battery technology to Li-ion batteries (LIBs) for grid-scale energy storage and transportation applications. O 2 –hard carbon full-cells with practical loading (>2.5 mAh cm –2 ) and lean electrolyte (?40
UK-based Faradion, a developer of sodium-ion battery technology ( earlier post ), and Phillips 66 have launched a new technical collaboration to develop lower-cost and higher-performing anode materials for sodium-ion batteries. Earlier post.).
Researchers at Northeastern University in Shenyang, China, have identified a novel carbon arsenide (AsC 5 ) monolayer as a promising anode material for sodium-ion batteries (NIBs). A paper on their work is published in Journal of Power Sources. —Lu et al.
Sodium is seen by some as a promising alternative, but the sodium-sulfur batteries currently in use run at temperatures above 300 °C, making them less energy efficient and safe than batteries that run at ambient temperatures. Sodium-ion batteries have been discussed in the literature. for some time. —Cao et al.
Solid-state sodium-ion battery company LiNa Energy has closed out a £3-million (US$3.4-million) LiNa’s battery cells utilize proven Sodium-Metal-Chloride chemistry in a planar design made possible with an ultra-thin solid ceramic electrolyte. million) late seed funding round, primarily from existing investors. Earlier post.)
Researchers at the University of Maryland, with colleagues at the University of Illinois at Chicago, report on a new method for expanding graphite for use as a superior anode for sodium-ion batteries in a paper in Nature Communications. to enlarge the interlayer lattice distance to accomodate the larger sodium ions.
Solid-state sodium-ion batteries are safer than conventional lithium-ion batteries, which pose a risk of fire and explosions, but their performance has been too weak to offset the safety advantages. Researchers at the University of Houston have now developed an organic cathode that improves both stability and energy density.
Prototype sodium silicate hydrogen generation system as presented earlier this year at DOE merit review. The H300 utilizes real-time swappable cartridges that generate hydrogen on demand using SiGNa’s proprietary sodium silicide (NaSi) powder. Sodium-Silica-Gel: 2Na-SG + H 2 O → H 2 + Na 2 Si 2 O 5. Click to enlarge.
A team led by researchers from the University of Alberta (Canada) Scientists has developed a hybrid sodium-ion capacitor (NIC) using active materials in both the anode and the cathode derived entirely from peanut shells—a green and highly economical waste globally generated at more than 6 million tons per year. Batteries'
Researchers at Chalmers University of Technology, Sweden, have developed a nanometric graphite-like anode for sodium ion (Na + storage), formed by stacked graphene sheets functionalized only on one side, termed Janus graphene. The estimated sodium storage up to C 6.9 100 to 150 mA h g ? 100 to 150 mA h g ?1
Researchers at the University of Maryland have developed a nanocomposite material of amorphous, porous FePO 4 nanoparticles electrically wired by single-wall carbon nanotubes as a potential cathode material for sodium-ion batteries (SIBs). SWNT composite is a promising cathode material for viable sodium-ion batteries.
Sodium-ion batteries (Na-ion, NIBs) are seen as an alternative to lithium-ion batteries for large-scale applications due to their lower cost and abundant supply of sodium. Yissum is the technology transfer company of the University. It gives a high capacity of 730?mAh?g Mason, Sudip K. Batteries'
Produced water from coal-bed natural gas (CBNG) production may contain sodium bicarbonate (NaHCO 3 ) at concentrations that can harm aquatic life, according to a new study by the US Geological Survey; Montana Fish, Wildlife and Parks; the Bureau of Land Management and the US Environmental Protection Agency. Farag, A.M., and Harper, D.D.,
Blackstone Technology GmbH may begin commercialization of 3D-printed solid-state sodium-ion batteries as early as 2025. Furthermore, the upscaling of sodium-based solid-state electrolytes on a ton scale is being developed in order to be able to produce them in the Blackstone Group from 2025.
A team from the University of New South Wales (Australia) reports on a novel core-shell strategy leading to high and stable hydrogen absorption/desorption cycling for sodium borohydride (NaBH 4 ) under mild pressure conditions (4 MPa) in an open-access paper in the journal ACS Nano. Credit: ACS, Christian and Aguey-Zinsou.
Building on earlier work, researchers in China have fabricated a hierarchical metal-organic nanocomposite for use as a cathode in sodium-ion batteries (SIBs). 2017) “In-Situ Formed Hierarchical Metal-Organic Flexible Cathode for High-Energy Sodium-Ion Batteries” ChemSusChem doi: 10.1002/cssc.201701484. and Huang, Y. 201701484.
Researchers at Isfahan University of Technology (Iran) report the efficient production of cellulosic ethanol from rice straw using a new sodium carbonate pretreatment method. Rice straw was treated with sodium carbonate (Na 2 CO 3 )prior to enzymatic hydrolysis and fermentation. and 1 M sodium carbonate solution.
Solid-state sodium battery company LiNa Energy ( earlier post ) has closed out a £3.5-million LiNa Energy, a spin-out from Lancaster University, established in 2017, is commercializing a safe, cobalt- and lithium-free solid-state sodium battery. million (US$4.8-million)
Researchers at Justus Liebig University, Giessen, Germany, have improved the performance of sodium-ion batteries ( earlier post ) by using tailor-made carbon materials with hierarchical porosity for the anode instead of common carbon-based anode materials. 1 at C/5 while exhibiting excellent rate capability and reasonable cycle life.
An ingredient used to flavor whiskey and make fertilizer could soon play an important role in EV batteries, researcher at Estonia's Tartu University say.
The first international “Science Award Electrochemistry” from BASF and Volkswagen ( earlier post ) goes to Dr. Naoaki Yabuuchi, Tokyo University of Science, Institute for Science and Technology, Tokyo, Japan. Yabuuchi has showed, among other things, how new battery materials can improve the efficiency of lithium-ion and sodium-ion batteries.
In October 2008, Xcel began testing a one-megawatt sodium-sulfur (NaS) battery ( earlier post ) to demonstrate its ability to store wind energy and move it to the electricity grid when needed. Sodium Sulfur Battery Energy Storage And Its Potential To Enable Further Integration of Wind (Wind-to-Battery Project).
Researchers at the University of Texas, including Dr. John Goodenough, are proposing a strategy for high-capacity next-generation alkali (lithium or sodium)-ion batteries using water-soluble redox couples as the cathode. The present sodium-sulfur battery operates above 300 °C. Example of a lithium-water rechargeable battery.
Tin (Sn) shows promise as a robust electrode material for rechargeable sodium-ion (Na-ion) batteries, according to a new study by a team from the University of Pittsburgh and Sandia National Laboratory. reversible and rapid ion insertion and extraction, but using sodium ions rather than lithium.
Stanford researchers have developed a sodium-ion battery (SIB) that can store the same amount of energy as a state-of-the-art lithium ion, at substantially lower cost. Thus, further research is required to find better sodium host materials. The sodium salt makes up the cathode; the anode is made up of phosphorous.
Researchers at Empa and the University of Geneva (UNIGE) have developed a prototype of a novel solid-state sodium battery with the potential to store extra energy and with improved safety. The closo-borate sodium superionic conductor—Na 2 (B 12 H 12 ) 0.5 (B B 10 H 10 ) 0. —Duchêne et al. Duchêne et al. Resources.
is considering targeting its lower-temperature molten-salt electrolyte battery, being developed in partnership with Kyoto University ( earlier post ), to makers of electric and hybrid passenger cars, according to Bloomberg. In a joint project with Kyoto University, Sumitomo developed a molten salt with a melting point as low as 57 °C.
A typical example is the use of a dilute aqueous sodium hydroxide (NaOH) solution to absorb SO 2 from flue gas, forming an aqueous Na 2 SO 3 solution. Linkous, Olawale Adebiyi and Ali T-Raissi (2010) Hydrogen Production via Photolytic Oxidation of Aqueous Sodium Sulfite Solutions. Huang et al. Cunping Huang, Clovis A.
in partnership with Kyoto University, has developed a lower temperature molten-salt rechargeable battery that promises to cost only about 10% as much as lithium ion batteries. The new battery uses sodium-containing substances melted at a high temperature. The company and the university have applied for patents.
A team from the Max Planck Institute for Solid State Research in Stuttgart and the University of Science and Technology of China, Hefei, has developed a high-power, high-capacity sodium battery with 96% capacity retention after 2,000 cycles. 2016), “High Power–High Energy Sodium Battery Based on Threefold Interpenetrating Network.”
Swedish sodium-ion battery developer Altris presented a pure Prussian White cathode material with a capacity of 160 mAh/g, making it the highest capacity declared to date. Prussian White is a framework material consisting of sodium, iron, carbon and nitrogen (Na x Fe[Fe(CN) 6 ] with x>1.9). Earlier post.)
Researchers at the University of Queensland have show that a low-cost Mg-based hydrogen storage alloy is possible with only 1 wt% Si. wt% hydrogen is achieved via trace sodium (Na) addition. A high hydrogen capacity of 6.72 A paper on their work is published in the Journal of Power Sources.
A team from the University of Technology, Sydney (Australia) and Gyeongsang National University (S. Korea) have developed SnO2 @graphene nanocomposites for use as anodes in sodium-ion (Na-ion) batteries. The material also demonstrated a good high rate capability for reversible sodium storage. —Su et al.
After years of anticipation, sodium-ion batteries are starting to deliver on their promise for energy storage. Sodium-ion batteries just don't have the oomph needed for EVs and laptops. At about 285 Wh/kg, lithium-ion batteries have twice the energy density of sodium, making them more suitable for those portable applications.
The Advanced Research Projects Agency - Energy (ARPA-E) has awarded $3 million from its 2015 OPEN funding to a project to develop an all-solid-state sodium battery. A sodium-based battery, on the other hand, has the potential to store larger amounts of electrical energy at a significantly lower cost. Led by Steve W.
Researchers at King Abdullah University of Science and Technology (KAUST) in Saudi Arabia have developed a continuous electrically-driven membrane process which successfully enriches lithium from seawater samples of the Red Sea by 43,000 times (i.e., 13000 ppm of sodium, magnesium, calcium, and potassium ions, among others).
Lithium is a rather scarce […] The post Tokyo University Scientists vastly improve capacity of sodium- and potassium-ion batteries appeared first on Electric Cars Report. Although LIBs deliver the best performance in many aspects when compared to other rechargeable batteries, they have their fair share of disadvantages.
British battery R&D company Faradion has demonstrated a proof-of-concept electric bike powered by sodium-ion batteries at the headquarters of Williams Advanced Engineering, which collaborated in the development of the bike. Oxford University was also a partner. Sodium-ion intercalation batteries—i.e., Earlier post.)
Professor John Goodenough, the inventor of the lithium-ion battery, and his team at the University of Texas at Austin have identified a new cathode material made of the nontoxic and inexpensive mineral eldfellite (NaFe(SO 4 ) 2 ), presenting a significant advancement in the quest for a commercially viable sodium-ion battery.
Researchers at the University of Tokyo have developed a battery based on the concept of a combination of a perovskite-type cathode and a low-electrode-potential anode that can achieve high energy densities through the use of organic rather than aqueous electrolytes. Earlier post.). —Hibino et al. under milder conditions than usual.
A research team led by a group from Peking University has designed a new 3D carbon monolith, Hex-C 57 , using 5–7 nanoribbons as the building block, for use asan anode material for sodium-ion batteries.A paper on their work appears in the Journal of Power Sources. —Sun et al. mAhg −1 ) and volumetric capacity (314.61
The projects, led by universities, private companies, and national laboratories, were selected to develop technologies to advance UNF recycling, reduce the volume of high-level waste requiring permanent disposal, and provide safe domestic advanced reactor fuel stocks. Earlier post.) Award amount: $4,715,163). Award amount: $1,844,998).
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content