article thumbnail

MIT Sequential Decomposition Synthesis process produces thin solid-state electrolytes without sintering

Green Car Congress

A team from MIT has developed a new approach to fabricating oxide-based solid-state electrolytes that are comparable in thickness to the polymer separators found in current Li-ion batteries without sintering: sequential decomposition synthesis (SDS). Hood et al.

MIT 243
article thumbnail

Tsinghua, MIT, Argonne team discovers lithium titanate hydrates for superfast, stable cycling in Li-ion batteries

Green Car Congress

An international research team from Tsinghua University, MIT and Argonne National Laboratory has discovered a series of novel lithium titanate hydrates that show better electrochemical performances compared to all the Li 2 O–TiO 2 materials reported so far—including those after nanostructuring, doping and/or coating.

article thumbnail

MIT, Toyota team clarifies role of iodide in Li-air batteries

Green Car Congress

Lithium-air (or lithium-oxygen) batteries potentially could offer three times the gravimetric energy of current Li-ion batteries (3500 Wh/kg at the cell level); as such, they are looked to a potential solution for long-range EVs. One of the main problems related to Li 2 O 2 precipitation is its insulating nature.

MIT 199
article thumbnail

MIT/Tsinghua high-rate aluminum yolk-shell nanoparticle anode for Li-ion battery with long cycle life and high capacity

Green Car Congress

A team of researchers at MIT and Tsinghua University has developed a high-rate, high-capacity and long-lived anode for Li-ion batteries comprising a yolk-shell nanocomposite of aluminum core (30 nm in diameter) and TiO 2 shell (~3 nm in thickness), with a tunable interspace (Al@TiO 2 , or ATO). —Li et al.

Li-ion 150
article thumbnail

MIT-led team devises new approach to designing solid ion conductors; implications for high-energy solid-state batteries

Green Car Congress

Researchers led by a team from MIT, with colleagues from Oak Ridge National Laboratory (ORNL), BMW Group, and Tokyo Institute of Technology have developed a fundamentally new approach to alter ion mobility and stability against oxidation of lithium ion conductors—a key component of rechargeable batteries—using lattice dynamics.

MIT 170
article thumbnail

MIT Team Extends Use of Virus Template to Assemble Li-ion Anode Materials; Biologically Activated Noble Metal Alloys

Green Car Congress

MIT researchers used modified M13 bacteriophages as templates to assemble noble metal allow nanowires for Li-ion anode materials. An MIT team including Drs. Belcher (2010) Biologically Activated Noble Metal Alloys at the Nanoscale: For Lithium Ion Battery Anodes. Credit: ACS, Lee et al. Click to enlarge.

Li-ion 210
article thumbnail

MITEI study finds hydrogen-generated electricity is a cost-competitive candidate for backing up wind and solar

Green Car Congress

A team at MITEI (MIT Energy Initiative) has found that hydrogen-generated electricity can be a cost-competitive option for backing up wind and solar. Applying the model, they found that the average LCOE associated with meeting this seasonal imbalance is $2400/MWh using a HFGT fueled with green hydrogen and $3000/MWh using a LI.

Wind 170