article thumbnail

MIT Sequential Decomposition Synthesis process produces thin solid-state electrolytes without sintering

Green Car Congress

A team from MIT has developed a new approach to fabricating oxide-based solid-state electrolytes that are comparable in thickness to the polymer separators found in current Li-ion batteries without sintering: sequential decomposition synthesis (SDS). Hood et al.

MIT 243
article thumbnail

MIT electrolyte enables ultra-high voltage Ni-rich cathodes in Li-metal batteries

Green Car Congress

MIT researchers and colleagues at two national laboratories have developed a sulfonamide-based electrolyte that enables stable cycling of a commercial LiNi 0.8 In a paper in the journal Nature Energy , the MIT team reports that a lithium-metal battery with the electrolyte delivers a specific capacity of >230? —Yang Shao-Horn.

Ni-Li 284
article thumbnail

Tsinghua, MIT, Argonne team discovers lithium titanate hydrates for superfast, stable cycling in Li-ion batteries

Green Car Congress

An international research team from Tsinghua University, MIT and Argonne National Laboratory has discovered a series of novel lithium titanate hydrates that show better electrochemical performances compared to all the Li 2 O–TiO 2 materials reported so far—including those after nanostructuring, doping and/or coating.

article thumbnail

MIT, Brookhaven team develops simple method for stabilizing interfaces in solid-state lithium-ion batteries

Green Car Congress

Solid-state batteries could potentially not only deliver twice as much energy for their size, they also could virtually eliminate the fire hazard associated with today’s lithium-ion batteries. The research was supported by the US Army Research Office through MIT’s Institute for Soldier Nanotechnologies. —Professor Yildiz.

article thumbnail

MIT: hybrid cathodes could boost energy capacity of lithium-sulfur batteries

Green Car Congress

Researchers at MIT and in China are proposing a new class of dense intercalation-conversion hybrid cathodes by combining intercalation-type Mo 6 S 8 with conversion-type sulfur (HMSC) to realize a Li–S full cell. The electronic insulating nature of the S 8 and Li 2 S phases (as compared to, say, Li x CoO 2 , with its high Co 3+ ?

article thumbnail

MIT team develops data-driven safety envelope for lithium-ion batteries for EVs

Green Car Congress

Researchers at MIT, with a colleague from Tsinghua University, have developed a safety envelope for Li-ion batteries in electric vehicles by using a high accuracy finite element model of a pouch cell to produce more than 2,500 simulations and subsequently analyzing the data with Machine Learning (ML) algorithms. —Li et al.

article thumbnail

Stanford, CMU, MIT team reviews challenges to practical implementation of solid-state Li-ion batteries

Green Car Congress

Solid-state lithium-ion batteries, with higher volumetric energy densities than currently available lithium-ion batteries, offer a number of conceptual advantages including improved packaging efficiency; improved safety; and long cycle life. However, there remain a number of unresolved issues precluding commercialization at this point.

Li-ion 170