Remove Battery Remove Grid Remove MIT Remove Store
article thumbnail

SLAC, MIT, TRI researchers advance machine learning to accelerate battery development; insights on fast-charging

Green Car Congress

Scientists have made a major advance in harnessing machine learning to accelerate the design for better batteries. He said the results overturn long-held assumptions about how lithium-ion batteries charge and discharge and give researchers a new set of rules for engineering longer-lasting batteries.

MIT 236
article thumbnail

MIT study finds workplace charging and delayed home charging can mitigate electricity demand and cost

Green Car Congress

Large-scale deployment of battery electric vehicle (BEV) and photovoltaic (PV) electricity technologies could raise electricity costs by increasing peak evening electricity demand and causing overgeneration of electricity during midday. A new study by MIT researchers examines these risks and how they amplify or mitigate each other.

MIT 150
article thumbnail

False Starts: The Story of Vehicle-to-Grid Power

Cars That Think

They wanted to see whether an electric vehicle could feed electricity back to the grid. The company’s president, Tom Gage , dubbed the system “vehicle to grid” or V2G. And EV owners would become entrepreneurs, selling electricity back to the grid. And indeed, that’s how promoters of vehicle-to-grid technology perceive the EV.

Grid 138
article thumbnail

Liquid Metal Battery Corp secures patent rights from MIT

Green Car Congress

Liquid Metal Battery Corporation (LMBC), a Cambridge, Massachusetts company founded in 2010 to develop new forms of electric storage batteries that work in large, grid-scale applications, has secured the rights to key patent technology from MIT. Patents for all liquid metal battery inventions were licensed from MIT.

MIT 210
article thumbnail

Total Signs Research Agreement with MIT to Develop New Stationary Batteries for Solar Power; Smaller-Scale Version of All-Liquid Metal Battery Work Supported by ARPA-E

Green Car Congress

Total has signed a research agreement with the Massachusetts Institute of Technology (MIT) to develop new stationary batteries that are designed to enable the storage of solar power. This agreement valued at $4 million over five years is part of the MIT Energy Initiative (MITEI), which Total joined as a member in November 2008.

MIT 199
article thumbnail

Rechargeable membrane-less hydrogen bromine flow battery shows high power density

Green Car Congress

MIT researchers have engineered a new rechargeable, membrane-less hydrogen bromine laminar flow battery with high power density. For applications that require the storage of large quantities of energy economically and efficiently, flow batteries have received renewed attention. Credit: Braff et al. Click to enlarge.

Recharge 291
article thumbnail

MIT team develops first supercapacitor made entirely from neat MOFs, without conductive additives or binders

Green Car Congress

Researchers at MIT have shown that a MOF (metal-organic framework) with high electrical conductivity—Ni 3 (2,3,6,7,10,11-hexaiminotriphenylene) 2 (Ni 3 (HITP) 2 )—can serve as the sole electrode material in a supercapacitor. —Alexandru Vlad.

MIT 150