Remove Batteries Remove Commercial Remove Ni-Li Remove Resource
article thumbnail

Researchers in Korea propose graphene/Ni foam as Li metal storage medium for advanced batteries

Green Car Congress

Researchers in Korea have developed three-dimensional monolithic corrugated graphene on nickel foam electrode as a Li metal storage framework in carbonate electrolytes. Therefore, hybrid engineering to prevent dendritic Li growth and increase the coulombic efficiency in highly reactive electrolytes is essential. —Kang et al.

Ni-Li 375
article thumbnail

MIT electrolyte enables ultra-high voltage Ni-rich cathodes in Li-metal batteries

Green Car Congress

MIT researchers and colleagues at two national laboratories have developed a sulfonamide-based electrolyte that enables stable cycling of a commercial LiNi 0.8 V in lithium-metal batteries (LMBs). V lithium-metal battery can retain >88% capacity for 90 cycles. O 2 cathode with a cut-off voltage up to 4.7?V

Ni-Li 284
article thumbnail

Nanjing researchers design new Li-rich layered cathode

Green Car Congress

Researchers at Nanjing University (China) have introduced a new layered C2/m oxide—Li 2 Ni 0.2 Compared with Li 2 MnO 3 (LMO), LNMR displays superior capacity, a more stable capacity retention rate, higher energy density and average discharge voltage. In such materials, 1/3 of the TM sites are occupied by Li phase.

Ni-Li 365
article thumbnail

Researchers show clean solid–electrolyte/electrode interfaces double capacity of solid-state Li batteries

Green Car Congress

Scientists at Tokyo Institute of Technology (Tokyo Tech), Tohoku University, National Institute of Advanced Industrial Science and Technology, and Nippon Institute of Technology, have demonstrated by experiment that a clean electrolyte/electrode interface is key to realizing high-capacity solid-state lithium batteries (SSLBs). O 4 interfaces.

Ni-Li 243
article thumbnail

U Texas team develops cobalt-free high-energy lithium-ion battery

Green Car Congress

Researchers from the Cockrell School of Engineering at The University of Texas at Austin have developed a cobalt-free high-energy lithium-ion battery, eliminating the cobalt and opening the door to reducing the costs of producing batteries while boosting performance in some ways. More nickel in a battery means it can store more energy.

article thumbnail

UC Irvine team creates long-lasting, cobalt-free, low-nickel lithium-ion batteries

Green Car Congress

In a discovery that could reduce or even eliminate the use of cobalt—which is often mined using child labor—in the batteries that power electric cars and other products, scientists at the University of California, Irvine (UCI) have developed a long-lasting alternative made with nickel. Resources Zhang, R., The LiNi 0.5

article thumbnail

UNIST team develops new electrolyte additive for high-energy-density Li-ion batteries

Green Car Congress

Researchers at the Ulsan National Institute of Science and Technology (UNIST) in Korea have developed an innovative electrolyte additive that enables a high-energy-density Li-ion battery to retain more than 80% of its initial capacity even after hundreds of cycles. The amount of metal inside the anode determines the battery capacity.

Li-ion 417