Remove 2014 Remove Li-ion Remove Recharge Remove Universal
article thumbnail

NTU Singapore team develops ultra-fast charging Li-ion battery with new TiO2 gel anode material

Green Car Congress

Researchers from Nanyang Technological University (NTU Singapore) led by Professor Xiaodong Chen have developed a new TiO 2 gel material for Li-ion battery anodes. A battery equipped with the new anode material can be recharged up to 70% in only 2 minutes. A 2013 paper (Dylla et al. ) —Prof. Chandran, B.

Li-ion 290
article thumbnail

Researchers identify new class of non-flammable electrolytes for Li-ion batteries

Green Car Congress

Researchers led by chemist Joseph DeSimone at the University of North Carolina at Chapel Hill, in collaboration with Nitash P. Balsara at UC Berkeley, have identified a new class of nonflammable electrolytes based on functionalized perfluoropolyethers (PFPEs) for lithium-ion batteries. —Dominica Wong, lead author. —Prof.

Li-ion 261
article thumbnail

Kyoto team develops new cathode material for high-energy-density rechargeable magnesium batteries

Green Car Congress

Charge–discharge profiles of ion-exchanged MgFeSiO 4. A team of researchers from Kyoto University has demonstrated ion-exchanged MgFeSiO 4 as a feasible cathode material for use in high-energy-density rechargeable magnesium batteries. Electrolyte was 0.5 Measurement temperature was 55°C. Current density was 6.62

Recharge 252
article thumbnail

PATHION develops new LiRAP-based solid-state electrolytes for Li-sulfur and sodium-ion batteries

Green Car Congress

Supported by an ARPA-E grant, LiRAP has proven to be a safe alternative compared to the liquid electrolytes used in most of today’s lithium ion batteries. The LiRAP solid electrolytes conduct Li + ions well at high voltage and high current, providing much enhanced energy density and power capacity as well as safety. Braga, J.A.

Li-ion 150
article thumbnail

RPI researchers develop safe, long-cycling Li-metal rechargeable battery electrode; demonstrate Li-carbon battery

Green Car Congress

Capacity and coulombic efficiency versus cycle index of Li-PGN cathodes at a rate of ~1C. O 2 and Li 3 V 1.98 Researchers at Rensselaer Polytechnic Institute have developed a safe, extended cycling lithium-metal electrode for rechargeable Li-ion batteries by entrapping lithium metal within a porous graphene network (Li-PGN).

Recharge 252
article thumbnail

Toshiba to start field testing medium-sized EV bus with wireless recharging, SCiB Li-ion battery

Green Car Congress

kWh SCiB ( earlier post ) pack, Toshiba’s advanced lithium-ion rechargeable battery, and will make regular trips between All Nippon Airways Co. Development of this system has been supported by the Ministry of the Environment under its Low Carbon Technology Research and Development Program since 2014. The 11-kilometer (6.8-mile)

Li-ion 150
article thumbnail

Purdue researchers convert packing peanuts into anode materials for Li-ion batteries; outperforming graphite

Green Car Congress

Purdue researchers have developed a process to manufacture carbon-nanoparticle and microsheet anodes for Li-ion batteries from polystyrene and starch-based packing peanuts, respectively. These carbonaceous electrodes could also be used for rechargeable sodium-ion batteries. Batteries'

Li-ion 150