article thumbnail

Ford researchers to present paper on fast-charging Li-ion batteries at SAE WCX

Green Car Congress

At the upcoming WCX 17: SAE World Congress Experience (the re-imagined SAE World Congress) in April, Xiao Yang and Ted Miller from Ford will present a paper on the fast recharge capability of Li-ion batteries and its effect on capacity degradation.

Li-ion 223
article thumbnail

ETH Zurich team shows vanadate-borate glasses as inexpensive high-capacity cathodes for Li-ion batteries

Green Car Congress

A team from ETH Zurich in Switzerland has demonstrated the use of vanadate-borate glasses (Li 2 O-B 2 O 3 -V 2 O 5 , referred to as V 2 O 5-LiBO 2 ) as high-capacity cathode materials for rechargeable Li-ion batteries for the first time. —Afyon et al.

Li-ion 318
article thumbnail

INL, UCSD researchers find slow, low-energy charging of Li batteries creates glassy lithium; high-performance Li-metal batteries

Green Car Congress

The findings suggest strategies for fine-tuning recharging approaches to boost battery life and—intriguingly—for making glassy metals for other applications. Compared to crystalline Li, glassy Li outperforms in electrochemical reversibility, and it has a desired structure for high-energy rechargeable Li batteries.

Li-ion 327
article thumbnail

Kyoto team develops new cathode material for high-energy-density rechargeable magnesium batteries

Green Car Congress

Charge–discharge profiles of ion-exchanged MgFeSiO 4. Three-electrode cells using Mg metal counter electrode and silver reference electrode were used. A team of researchers from Kyoto University has demonstrated ion-exchanged MgFeSiO 4 as a feasible cathode material for use in high-energy-density rechargeable magnesium batteries.

Recharge 252
article thumbnail

Ningbo researchers propose mixed-ion Li/Na batteries

Green Car Congress

Schematics of Li + /Na + mixed-ion battery. During charging (or discharging), the storage (or release) of Li + takes place at anode, and the release (or storage) of Na + occurs at cathode. However, a number of issues remain before SIBs could become commercially competitive with Li-ion batteries (LIBs). Chen et al.

Li-ion 170
article thumbnail

UCSD team develops new disordered rock salt anode for fast-charging, safer lithium-ion batteries

Green Car Congress

Researchers at UC San Diego, with their colleagues at other institutions, have developed a new anode material that enables lithium-ion batteries to be safely recharged within minutes for thousands of cycles. volts versus a Li/Li + reference electrode. other intercalation anode candidates (Li 3 VO 4 and LiV 0.5

article thumbnail

RIKEN team develops high-performance lithium-iodine battery system with higher energy density than conventional Li-ion

Green Car Congress

The working concept of I3 – /I – redox reaction in the aqueous Li-I 2 battery. A team from Japan’s RIKEN, led by Hye Ryung Byon, has developed a lithium-iodine (Li-I 2 ) battery system with a significantly higher energy density than conventional lithium-ion batteries. Zhao et al. Click to enlarge. kWh kg -1 cell (1.0

Li-ion 255