Remove Electric Remove Recharge Remove Sodium Remove Store
article thumbnail

Empa, UNIGE team develop prototype solid-state sodium battery; focus on improving the solid-solid interface

Green Car Congress

Researchers at Empa and the University of Geneva (UNIGE) have developed a prototype of a novel solid-state sodium battery with the potential to store extra energy and with improved safety. Rechargeable all-solid-state batteries promise higher energy density and improved operational safety. B 10 H 10 ) 0. —DuchĂȘne et al.

Sodium 186
article thumbnail

Researches developed EV batteries that store 6 times more charge than common ones 

Electric Vehicles India

Researches developed EV batteries that store 6 times more charge than common ones . An international team of researchers led by Stanford University has developed rechargeable batteries that store the charge up to 6 times more than the normal currently available commercial ones.

Store 69
article thumbnail

EV Guru: Sodium-Ion Batteries are Coming Sooner Than You think!

Plug In India

In India, OLA Electric and Tata group have plans to make cells at a large scale. Demand for the element is so great for applications including electric vehicles, portable electronic devices, and stationary energy units, that lithium mining companies are struggling to keep up. Sodium is bigger and heavier than lithium cell.

Sodium 59
article thumbnail

UT Austin team devises new strategy for safe, low-cost, all-solid-state rechargeable Na or Li batteries suited for EVs

Green Car Congress

John Goodenough, known around the world for his pioneering work that led to the invention of the rechargeable lithium-ion battery, have devised a new strategy for a safe, low-cost, all-solid-state rechargeable sodium or lithium battery cell that has the required energy density and cycle life for a battery that powers an all-electric road vehicle.

Low Cost 150
article thumbnail

Univ. of Texas researchers propose lithium- or sodium-water batteries as next generation of high-capacity battery technology; applicable for EVs and grid storage

Green Car Congress

Example of a lithium-water rechargeable battery. Researchers at the University of Texas, including Dr. John Goodenough, are proposing a strategy for high-capacity next-generation alkali (lithium or sodium)-ion batteries using water-soluble redox couples as the cathode. The present sodium-sulfur battery operates above 300 °C.

Sodium 218
article thumbnail

Carnegie Mellon researchers develop semi-liquid lithium metal anode for use with solid electrolytes

Green Car Congress

Solid electrolytes are considered to be key components for next-generation lithium metal-based rechargeable batteries. The method used in this work has great potential for building reliable alkaline metal-based rechargeable batteries. The interdisciplinary research team published their findings in the current issue of Joule.

Polymer 255
article thumbnail

Researchers devise electrode architectures to prevent dendrite formation in solid-state batteries

Green Car Congress

So far, the current densities that have been achieved in experimental solid-state batteries have been far short of what would be needed for a practical commercial rechargeable battery. In a second version, the team introduced a very thin layer of liquid sodium potassium alloy in between a solid lithium electrode and a solid electrolyte.

Batteries 199