article thumbnail

New self-purifying electrolyte for high-energy Li-ion batteries

Green Car Congress

A research team in China has developed a new type of electrolyte for high-energy Li-ion batteries with a self-purifying feature that opens a promising approach for electrolyte engineering for next-generation high-energy Li-ion batteries. —Lu et al.

Li-ion 370
article thumbnail

Lyten introduces next generation Lithium-Sulfur battery for EVs; 3X energy density of Li-ion

Green Car Congress

Lyten , an advanced materials company, introduced its LytCell EV lithium-sulfur (Li-S) battery platform. The technology is optimized for the electric vehicle market and is designed to deliver three times (3X) the gravimetric energy density of conventional lithium-ion batteries. Faster charge times of less than 20 minutes.

Li-ion 459
article thumbnail

UNIST team develops new electrolyte additive for high-energy-density Li-ion batteries

Green Car Congress

Researchers at the Ulsan National Institute of Science and Technology (UNIST) in Korea have developed an innovative electrolyte additive that enables a high-energy-density Li-ion battery to retain more than 80% of its initial capacity even after hundreds of cycles. C and fast charging capability (1.9% O 2 cathodes.

Li-ion 417
article thumbnail

Researchers use carbon-based anodes with “bumpy” surfaces for Li-ion batteries that last longer in extreme cold

Green Car Congress

The resulting 12-sided carbon nanospheres had “bumpy” surfaces that demonstrated excellent electrical charge transfer capabilities. The resulting 12-sided carbon nanospheres had bumpy surfaces that demonstrated excellent electrical charge transfer capabilities. capacity retention at 0.1 A g –1 as the temperature drops to ?20

Li-ion 418
article thumbnail

Researchers investigate effect of impact on structurally-embedded Li-ion batteries

Green Car Congress

Researchers in China are investigating the effect of low-velocity impact loads on structurally embedded Li-ion batteries in vehicles. —Li et al. The researchers found that embedded batteries experienced micro short circuits during impact-loading process and kept good energy-storage capacity after transient impact.

Li-ion 195
article thumbnail

Researchers move closer to faster-charging Li-ion batteries; real-time tracking of Li ions in LTO

Green Car Congress

A team of scientists led by the US Department of Energy’s (DOE) Brookhaven National Laboratory and Lawrence Berkeley National Laboratory has captured in real time how lithium ions move in lithium titanate (LTO), a fast-charging battery electrode material made of lithium, titanium, and oxygen.

Li-ion 329
article thumbnail

Georgia Tech researchers develop aluminum-foil-based anodes for all-solid-state Li-ion batteries

Green Car Congress

Woodruff School of Mechanical Engineering and the School of Materials Science and Engineering, is using an aluminum-foil-based anode in a solid-state Li-ion battery to create batteries with higher energy density and greater stability. negative electrode is combined with a Li 6 PS 5 Cl solid-state electrolyte and a LiNi 0.6

Li-ion 370