Remove Charging Remove Energy Remove Li-ion Remove Universal
article thumbnail

New self-purifying electrolyte for high-energy Li-ion batteries

Green Car Congress

A research team in China has developed a new type of electrolyte for high-energy Li-ion batteries with a self-purifying feature that opens a promising approach for electrolyte engineering for next-generation high-energy Li-ion batteries. —Lu et al.

Li-ion 370
article thumbnail

Researchers use carbon-based anodes with “bumpy” surfaces for Li-ion batteries that last longer in extreme cold

Green Car Congress

The resulting 12-sided carbon nanospheres had “bumpy” surfaces that demonstrated excellent electrical charge transfer capabilities. The resulting 12-sided carbon nanospheres had bumpy surfaces that demonstrated excellent electrical charge transfer capabilities. capacity retention at 0.1 A g –1 as the temperature drops to ?20

Li-ion 418
article thumbnail

U Michigan study finds cracking in Li-ion batteries speeds up EV charging

Green Car Congress

Rather than being solely detrimental, cracks in the cathodes of lithium-ion batteries reduce battery charge time, according to research done at the University of Michigan. An open-access paper on the work is published in the RSC journal Energy & Environmental Science.

Li-ion 195
article thumbnail

Argonne researchers identify another reason why fast-charging degrades the performance of Li-ion batteries

Green Car Congress

A new study by researchers from Argonne National Laboratory and the University of Illinois Urbana-Champaign seeking to identify the reasons that cause the performance of fast-charged lithium-ion batteries to degrade in EVs has found interesting chemical behavior of the anode as the battery is charged and discharged.

Li-ion 321
article thumbnail

WPI-led team develops dry-print process to make better, cheaper electrodes for Li-ion batteries

Green Car Congress

A team led by Worcester Polytechnic Institute (WPI) researcher Yan Wang has developed a solvent-free process to manufacture lithium-ion battery electrodes that are greener, cheaper, and charge faster than electrodes currently on the market. The dry-coated electrodes were then heated and compressed with rollers. 2023.04.006

Li-ion 243
article thumbnail

Stanford scientists identify new Li-B-S solid electrolyte materials that boost lithium-ion battery performance

Green Car Congress

Stanford University scientists have identified a new solid-state Li-ion electrolyte predicted to exhibit simultaneously fast ionic conductivity, wide electrochemical stability, low cost, and low mass density. sulfur (Li?B?S) 1 in Li 5 B 7 S 13 and 80 (?56, 1 in Li 9 B 19 S 33. V for Li 5 B 7 S 13 , 0.16

Li-ion 397
article thumbnail

New halogen conversion-intercalation chemistry enables high-energy density aqueous Li-ion battery

Green Car Congress

A team of researchers led by a group from the University of Maryland has. volts versus Li/Li +. Combining this cathode with a passivated graphite anode, the team created a 4V-class aqueous Li-ion full cell with an energy density of 460 Wh kg -1 of total composite electrode and about 100% Coulombic efficiency.

Li-ion 271