This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Cheap and abundant, sodium is a promising candidate for new battery technology. However, the limited performance of sodium-ion batteries has hindered large-scale application. Sodium-ion batteries (NIBs) have attracted worldwide attention for next-generation energy storage systems. —Jin et al.
The resulting improved electrical capacity and recharging lifetime of the nanowires. low-cost Na-ion battery system for upcoming power and energy. The resulting improved electrical capacity and recharging lifetime of the nanowires. low-cost Na-ion battery system for upcoming power and energy. Na-ion batteries.
In a paper in Nature Materials , a team of researchers from BASF SE and Justus-Liebig-Universität Gießen report on the performance of a sodium-air (sodium superoxide) cell. Their work, they suggest, demonstrates that substitution of lithium by sodium may offer an unexpected route towards rechargeable metal–air batteries.
F 0.7 , for sodium-ion (Na-ion) batteries (NIBs). While high-energy Li-ion batteries (LIBs) are expected to contribute in part to the solution, the high cost and low stability prohibit wide application in this area, the researchers observe. In a prior study, they developed a new Li-ion battery electrode—Li 1.1
Rechargeable lithium metal batteries with increased energy density, performance, and safety may be possible with a newly-developed, solid-electrolyte interphase (SEI), according to Penn State researchers. This layer is very important and is naturally formed by the reaction between the lithium and the electrolyte in the battery.
containing both cathode and anode properties in the same body—for sodium-sulfur (Na-S) batteries by adopting a metal-organic framework (MOF) to incorporate single Yttrium atoms in a nitrogen-doped rhombododecahedron carbon host (Y SAs/NC). Researchers in China have designed a high-performance Janus electrode—i.e.,
Researchers at Tohoku University have devised a means to stabilize lithium or sodium depositions in rechargeablebatteries, helping keep their metallic structure intact. The discovery prevents potential battery degradation and short circuiting, and paves the way for higher energy-density metal-anode batteries.
As described in an open access paper in the journal NPG Asia Materials , the system is an intermediate between a battery and a fuel cell, and is accordingly referred to as a hybrid fuel cell. Sodium can serve as an alternative to lithium in rechargeablebatteries as the reversible storage mechanisms for sodium ions are very similar (e.g.,
Swedish battery materials company Altris AB, which specializes in producing highly sustainable cathode materials for rechargeablesodiumbatteries, has officially opened its first office in China. CATL has led the way and has announced that there will be a value chain to produce such batteries by 2023. V vs sodium.
The high surface area and large pore volume of aCNS in the positive electrode facilitated NaCl or LiCl deposition and trapping of Cl 2 for reversible NaCl/Cl 2 or LiCl/Cl 2 redox reactions and battery discharge/charge cycling. This work could open up widely available, low-cost graphitic materials for high-capacity alkali metal/Cl 2 batteries.
Example of a lithium-water rechargeablebattery. Researchers at the University of Texas, including Dr. John Goodenough, are proposing a strategy for high-capacity next-generation alkali (lithium or sodium)-ion batteries using water-soluble redox couples as the cathode. A typical Li-air battery discharges at 2.5-2.7
Tin (Sn) shows promise as a robust electrode material for rechargeablesodium-ion (Na-ion) batteries, according to a new study by a team from the University of Pittsburgh and Sandia National Laboratory. Rechargeable Na-ion batteries work on the same basic principle as Li-ion batteries—i.e.,
Prototype sodium silicate hydrogen generation system as presented earlier this year at DOE merit review. The H300 utilizes real-time swappable cartridges that generate hydrogen on demand using SiGNa’s proprietary sodium silicide (NaSi) powder. Sodium-Silica-Gel: 2Na-SG + H 2 O → H 2 + Na 2 Si 2 O 5. Click to enlarge.
A team of researchers at the US Department of Energy’s Argonne National Laboratory has synthesized amorphous titanium dioxide nanotube (TiO 2 NT) electrodes directly grown on current collectors without binders and additives to use as an anode for sodium-ion batteries. Earlier post.). —Xiong et al.
Schematic representation of the super-valent battery during charge/discharge process. A team from the University of Science and Technology Beijing is proposing a new super-valent battery based on aluminium ion intercalation and deintercalation. Herein, we define this kind of battery as super-valent battery. Wang et al.
Researchers at Empa and the University of Geneva (UNIGE) have developed a prototype of a novel solid-state sodiumbattery with the potential to store extra energy and with improved safety. Rechargeable all-solid-state batteries promise higher energy density and improved operational safety. B 10 H 10 ) 0. Duchêne et al.
Researchers at the University of Tokyo have developed a battery based on the concept of a combination of a perovskite-type cathode and a low-electrode-potential anode that can achieve high energy densities through the use of organic rather than aqueous electrolytes. Earlier post.). FeO z , with 2.58 ? for the anode and 2.75 ?
Researchers from the Samsung Advanced Institute of Technology report enhancing the energy density of manganese oxide (Na x MnO 2 ) cathode materials for sodiumrechargeablebatteries by incorporating aluminum. O 2 , suggest a strategy for achieving sodiumrechargeablebatteries with high energy density and stability.
Scientists at the research neutron source FRM II of the Technische Universität München (TUM) are taking a closer look at a high performance rechargeablebattery for future hybrid locomotives, the sodium/iron chloride battery manufactured by General Electric (GE). Up to 10,000 of these 2.33
Stanford researchers have developed a sodium-ion battery (SIB) that can store the same amount of energy as a state-of-the-art lithium ion, at substantially lower cost. Thus, further research is required to find better sodium host materials. The sodium salt makes up the cathode; the anode is made up of phosphorous.
Researchers at Argonne National Laboratory have developed selenium and selenium–sulfur (Se x S y )-based cathode materials for a new class of room-temperature lithium and sodiumbatteries. A paper on their work is published in the Journal of the American Chemical Society. V) without failure. However, both Li/S and Li/O 2. S y systems.
O 2 battery (0.5 The dash lines indicate the calculated thermodynamic potentials for the batteries. O 2 ) battery with low overpotentials. mA/cm 2 —the lowest ever reported in metal-oxygen batteries, according to the team. mA/cm 2 —the lowest ever reported in metal-oxygen batteries, according to the team.
nine battery-related efforts. The battery-related projects are: Coreshell Technologies : Thin-film battery electrode coating technology for lower costs and doubled battery life. NanoDian : Low-cost, safer, cobalt-free, nanostructured lithium-ion battery cathode material. The California Energy Commission awarded $3.75
The UK’s Network Rail, the company that runs, maintains and develops Britain’s rail tracks, signaling, bridges, tunnels, level crossings, viaducts and 17 key stations, is part of an industry study into the feasibility of using battery electric trains on parts of the railway which have not been electrified.
Schematic representation of the working principle behind a complete cycle of the desalination battery, showing how energy extraction can be accomplished: step 1, desalination; step 2, removal of the desalinated water and inlet of seawater; step 3, discharge of Na + and Cl ? in seawater; step 4, exchange to new seawater. Click to enlarge.
Researchers at US Department of Energy (DOE) Pacific Northwest National Laboratory have demonstrated a new tin-antimony (SnSb/C) nanocomposite based on sodium (Na) alloying reactions as an anode for Na-ion battery applications. Li alloys have been extensively investigated as high capacity anodes for Li-ion batteries.
Professor John Goodenough, the inventor of the lithium-ion battery, and his team at the University of Texas at Austin have identified a new cathode material made of the nontoxic and inexpensive mineral eldfellite (NaFe(SO 4 ) 2 ), presenting a significant advancement in the quest for a commercially viable sodium-ion battery.
Chemists at the University of Waterloo have identified the key reaction that takes place in sodium-air batteries. Understanding how sodium-oxygen batteries work has implications for developing the more powerful lithium-oxygen battery, which has been proposed by some as the “holy grail” of electrochemical energy storage.
Out of several candidates that could replace Li in rechargeablebatteries, calcium (Ca) stands out as a promising metal. Not only is Ca 10,000 times more abundant than Li, but it can also yield—in theory—similar battery performance.
E-bike powered by Faradion prototype Na-ion battery pack. British battery R&D company Faradion has demonstrated a proof-of-concept electric bike powered by sodium-ion batteries at the headquarters of Williams Advanced Engineering, which collaborated in the development of the bike. Click to enlarge. Earlier post.)
The US Department of Energy (DOE) will award $42 million to 12 projects to strengthen the domestic supply chain for advanced batteries that power electric vehicles (EVs). Project K is developing and commercializing a potassium-ion battery, which operates similarly to Li-ion batteries. Award amount: $3,198,085).
One molar LiPF6 in ethylene carbonate/dimethyl carbonate mixture containing 3 wt % of FEC was used as electrolyte for Li-ion cells, whereas 1 M NaClO 4 in propylene carbonate containing 10 wt % of FEC was used for Na-ion batteries. All batteries were cycled in the 20 mV to 1.5 Batteries' V potential range. Credit: ACS, He et al.
John Goodenough, known around the world for his pioneering work that led to the invention of the rechargeable lithium-ion battery, have devised a new strategy for a safe, low-cost, all-solid-state rechargeablesodium or lithium battery cell that has the required energy density and cycle life for a battery that powers an all-electric road vehicle.
Overview of the three vehicle classes identified in the study, and their corresponding battery technologies. Their low cost and ability to start the engine at cold temperatures sets them apart in conventional and basic micro-hybrid vehicles, and as auxiliary batteries in all other automotive applications, according to the report.
Supported by an ARPA-E grant, LiRAP has proven to be a safe alternative compared to the liquid electrolytes used in most of today’s lithium ion batteries. PATHION is working on a derivative for Li-sulfur batteries as well as a derivative that could be applied in a sodium-ion battery. Lithium sulfur. Braga, J.A.
in partnership with Kyoto University, has developed a lower temperature molten-salt rechargeablebattery that promises to cost only about 10% as much as lithium ion batteries. Molten-salt batteries use highly conductive molten salts as an electrolyte, and can offer high energy and power densities.
Lithium-ion batteries (LIBs) are, by far, the most widely used type of rechargeablebatteries, spanning numerous applications. Although LIBs deliver the best performance in many aspects when compared to other rechargeablebatteries, they have their fair share of disadvantages.
Dr Tim Nordh, CTO of Altris AB, explains how the company is driving a greener future with its offering of sustainable cathode and electrolyte materials for rechargeablesodiumbatteries. The post Fennac: Charging a safe and sustainable future through sodium-ion batteries appeared first on Innovation News Network.
Researchers from Carnegie Mellon University’s Mellon College of Science and College of Engineering have developed a semiliquid lithium metal-based anode (SLMA) that represents a new paradigm in battery design for solid electrolyte batteries. The interdisciplinary research team published their findings in the current issue of Joule.
Schematics of Li + /Na + mixed-ion battery. Lithium-intercalation compounds and sodium-intercalation compounds are used for anode and cathode, respectively. However, a number of issues remain before SIBs could become commercially competitive with Li-ion batteries (LIBs). Chen et al. Click to enlarge. MnO 2 and Na 0.44
NYSERDA president and CEO made the announcement at a meeting of the New York Battery and Energy Storage Technology (NY-BEST), a consortium created by Governor David Paterson to support New York’s energy storage industry. Integrating battery and ultra-capacitors on a common power circuit serving two renewable-energy generation sources.
Interest in higher energy-density batteries that pair alkali metal electrodes with solid electrolytes is high; however, such batteries have been plagued by a tendency for dendrites to form on one of the electrodes, eventually bridging the electrolyte and shorting out the battery cell.
Researchers in South Korea have demonstrated new type of room-temperature and high-energy density sodiumrechargeablebattery using a sulfur dioxide (SO 2 )-based inorganic molten complex catholyte that serves as both a Na + -conducting medium and cathode material (i.e. catholyte). mA cm −2 ). discharge and 0.2C Jeong et al.
Hydro-Québec (Canada) and Technifin (South Africa) have entered into an intellectual property collaboration agreement relating to the licensing of their respective intellectual property (IP) in lithium titanate spinel oxide (LTO) technologies, notably for lithium-ion battery applications. It operates at 1.5 It operates at 1.5
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content