Remove Battery Remove Li-ion Remove Low Cost Remove Store
article thumbnail

PNNL: single-crystal nickel-rich cathode holds promise for next-generation Li-ion batteries

Green Car Congress

High-energy nickel (Ni)–rich cathode will play a key role in advanced lithium (Li)–ion batteries, but it suffers from moisture sensitivity, side reactions, and gas generation. Researchers are working on ways to store more energy in the cathode materials by increasing nickel content. —Bi et al.

Li-ion 418
article thumbnail

ANL fluorinated cation electrolyte could help enable high-performance, long-lasting Li-metal batteries

Green Car Congress

Researchers at Argonne National Laboratory have developed a fluorinated cation electrolyte that could enable high-voltage lithium metal batteries. Fluorides have been identified as a key ingredient in interphases supporting aggressive battery chemistries. An open-access report on their work is published in Nature Communications.

article thumbnail

UH, Toyota researchers develop new cathode and electrolyte for high-power Mg battery rivaling Li-ion

Green Car Congress

Magnesium batteries have long been considered a potentially safer and less expensive alternative to lithium-ion batteries, but previous versions have been severely limited in the power they delivered. The combination affords a Mg battery that delivers a specific power of up to 30.4?kW?kg —Dong et al.

Li-ion 373
article thumbnail

New stable Fe3O4/C composite material for conversion electrode in solid-state Li-ion batteries

Green Car Congress

Researchers in Europe, with colleagues from Samsung R&D Institute in Japan, have developed a highly stable Fe 3 O 4 /C composite for use as a conversion electrode in all-solid-state Li-ion batteries. increasing demand for battery systems with higher energy density requests a breakthrough in finding new materials.

Li-ion 170
article thumbnail

Solid state Batteries v/s Li-ion Batteries: A Comparison Based on Cost

Get Electric Vehicle

The EV battery landscape is changing dramatically with solid-state batteries emerging as a possible game changer.    As for any novel technology, the cost to develop, manufacture and integrate remains one of the deciding factors in the mass adoption and acceptance of these technologies. The answer is pretty simple.

Li-ion 75
article thumbnail

Chalmers team develops graphite-like anode for Na-ion batteries; Janus graphene

Green Car Congress

Researchers at Chalmers University of Technology, Sweden, have developed a nanometric graphite-like anode for sodium ion (Na + storage), formed by stacked graphene sheets functionalized only on one side, termed Janus graphene. Na is comparable to graphite for standard lithium ion batteries. 100 to 150 mA h g ?

Sodium 493
article thumbnail

UC Riverside team fabricates nanosilicon anodes for Li-ion batteries from waste glass bottles

Green Car Congress

Researchers at the University of California, Riverside’s Bourns College of Engineering have used waste glass bottles and a low-cost chemical process to fabricate nanosilicon anodes for high-performance lithium-ion batteries.

Li-ion 150