Remove Battery Remove Industry Remove Ni-Li Remove Powered
article thumbnail

New smelting reduction process to recover Co, Ni, Mn, and Li simultaneously from Li-ion batteries

Green Car Congress

A team from metals research institute SWERIM in Sweden reports on a smelting reduction process to recover cobalt, nickel, manganese and lithium simultaneously from spent Li-ion batteries. A paper on their work is published in the Journal of Power Sources. —Hu et al. —Hu et al. 2020.228936.

Ni-Li 321
article thumbnail

Researchers show clean solid–electrolyte/electrode interfaces double capacity of solid-state Li batteries

Green Car Congress

Scientists at Tokyo Institute of Technology (Tokyo Tech), Tohoku University, National Institute of Advanced Industrial Science and Technology, and Nippon Institute of Technology, have demonstrated by experiment that a clean electrolyte/electrode interface is key to realizing high-capacity solid-state lithium batteries (SSLBs).

Ni-Li 243
article thumbnail

U Texas team develops cobalt-free high-energy lithium-ion battery

Green Car Congress

Researchers from the Cockrell School of Engineering at The University of Texas at Austin have developed a cobalt-free high-energy lithium-ion battery, eliminating the cobalt and opening the door to reducing the costs of producing batteries while boosting performance in some ways. More nickel in a battery means it can store more energy.

article thumbnail

Argonne team develops new approach to cobalt-free Li-ion cathodes

Green Car Congress

Researchers at Argonne National Laboratory have developed a new approach to cobalt-free Li-ion cathodes that avoids some of the problems with other low-cobalt cathode approaches. A paper on their work appears in the Journal of Power Sources. Ni is in between Co and Mn in all these criteria. Croy, Brandon R. 2019.227113.

Li-ion 255
article thumbnail

NMCA shown to be a promising cathode material for high-power and safe Li-ion batteries

Green Car Congress

A team of researchers from CNRS, IPB and SAFT in France and UMICORE in Belgium report on the synthesis and performance of a new high-power cathode material for Li-ion batteries (NMCA) in a paper in the Journal of Power Sources. Li 1.11 (Ni 0.40 Biensan (2011) Li(Ni 0.40 Al 0.05 ) 0.89

Li-ion 210
article thumbnail

AIST researchers synthesize new class of high-voltage, high-capacity cathode materials for Li-ion batteries

Green Car Congress

Researchers at Japan’s National Institute of Advanced Industrial Science and Technology (AIST) have developed a new class of contenders for high-voltage and high-capacity Li-ion cathode materials with the composition Na x Li 0.7-x x Ni 1-y Mn y O 2 (0.03. One of the compositions—Na 0.093 Li 0.57

Li-ion 150
article thumbnail

Saft awarded $6.5M contract for high-power 270V and 28V Li-ion aviation batteries for F-35

Green Car Congress

Saft is developing advanced Li-ion battery technology for Lockheed Martin’s 5 th Gen F-35 Lightning II. As part of the contract, Saft will meet More Electric Aircraft (MEA) industry objectives that aim to optimize aircraft performance and reduce gas emissions. The 28V battery has a capacity of 900 Wh, and power of 5.0

Li-ion 186