article thumbnail

Fluorine-incorporated interface enhances cycling stability of Li metal batteries with Ni-rich NCM cathodes

Green Car Congress

The electrolyte evenly formed a protective film on the negative electrode and the positive electrode of the lithium metal battery, increasing the lifespan and output of the entire battery. Li/Li + ). O 2 full cell, with a high Coulombic efficiency of 99.98% after 100 cycles at 25 °C. —Lee et al. —Professor Kwak.

Ni-Li 357
article thumbnail

UC Irvine team creates long-lasting, cobalt-free, low-nickel lithium-ion batteries

Green Car Congress

Li metal), and the 2nd cycle at C/10 are plotted for calculating the specific capacity and specific energy. —Huolin Xin To solve that problem, Xin’s team spent three years devising a process called complex concentrated doping that enabled the scientists to alter the key chemical formula in lithium-ion batteries.

article thumbnail

U Texas team develops cobalt-free high-energy lithium-ion battery

Green Car Congress

Researchers from the Cockrell School of Engineering at The University of Texas at Austin have developed a cobalt-free high-energy lithium-ion battery, eliminating the cobalt and opening the door to reducing the costs of producing batteries while boosting performance in some ways. graduate Wangda Li. energy lithium?ion

article thumbnail

MIT electrolyte enables ultra-high voltage Ni-rich cathodes in Li-metal batteries

Green Car Congress

The electrolyte not only suppresses side reactions, stress-corrosion cracking, transition-metal dissolution and impedance growth on the cathode side, but also enables highly reversible Li metal stripping and plating on the lithium-metal anode (LMA), leading to a compact morphology and low pulverization. Huang, M.,

Ni-Li 284
article thumbnail

Nanjing researchers design new Li-rich layered cathode

Green Car Congress

Researchers at Nanjing University (China) have introduced a new layered C2/m oxide—Li 2 Ni 0.2 Compared with Li 2 MnO 3 (LMO), LNMR displays superior capacity, a more stable capacity retention rate, higher energy density and average discharge voltage. In such materials, 1/3 of the TM sites are occupied by Li phase.

Ni-Li 365
article thumbnail

Researchers designs new deep eutectic solvent to recover valuable elements from spent LNCM batteries

Green Car Congress

A team from Central South University in China has developed a new type of deep eutectic solvent (DES) that can efficiently leach metal elements from spent Ni-Co-Mn lithium-ion batteries (LNCM). The leaching rates of Ni, Co, Mn, and Li can all reach 99% under the conditions of T=140°C, t=10 min and no reductant.

Ni-Li 284
article thumbnail

Proterial developed a technology that reduces CO2 emissions during Li-ion cathode material production by more than 20%

Green Car Congress

formerly Hitachi Metals, earlier post ) has developed a technology to manufacture cathode materials for lithium-ion batteries (LIBs) without the previously required process of converting nickel to nickel hydroxide(Ni(OH) 2 ) to produce a precursor that is used as the starting material for the manufacture of cathode materials.

Li-ion 195