article thumbnail

PNNL: single-crystal nickel-rich cathode holds promise for next-generation Li-ion batteries

Green Car Congress

High-energy nickel (Ni)–rich cathode will play a key role in advanced lithium (Li)–ion batteries, but it suffers from moisture sensitivity, side reactions, and gas generation. Nickel offers relatively low cost, wide availability and low toxicity compared to other key battery materials, such as cobalt.

Li-ion 418
article thumbnail

Chalmers team develops graphite-like anode for Na-ion batteries; Janus graphene

Green Car Congress

Researchers at Chalmers University of Technology, Sweden, have developed a nanometric graphite-like anode for sodium ion (Na + storage), formed by stacked graphene sheets functionalized only on one side, termed Janus graphene. The estimated sodium storage up to C 6.9 100 to 150 mA h g ? 100 to 150 mA h g ?1

Sodium 493
article thumbnail

New long-duration, extended capacity Na-Al battery design for grid storage

Green Car Congress

Researchers led by the Department of Energy’s Pacific Northwest National Laboratory (PNNL) have extended the capacity and duration of sodium-aluminum batteries. The new sodium-based molten salt battery uses two distinct reactions. of peak charge capacity. —Weller et al. Weller et al.

article thumbnail

ARPA-E awards $42M to 12 projects for advanced EV batteries; EVs4ALL program

Green Car Congress

ARPA-E selected the following 12 teams from universities, national laboratories and the private sector to address and remove key technology barriers to EV adoption by developing next-generation battery technologies: 24M Technologies will develop low-cost and fast-charging sodium metal batteries with good low-temperature performance for EVs.

Li-ion 256
article thumbnail

Stanford team develops sodium-ion battery with performance equivalent to Li-ion, but at much lower cost

Green Car Congress

Stanford researchers have developed a sodium-ion battery (SIB) that can store the same amount of energy as a state-of-the-art lithium ion, at substantially lower cost. Thus, further research is required to find better sodium host materials. The sodium salt makes up the cathode; the anode is made up of phosphorous.

Sodium 186
article thumbnail

Vanderbilt researchers find iron pyrite quantum dots boost performance of sodium-ion and Li-ion batteries

Green Car Congress

nm, average) of iron pyrite (FeS 2 ) nanoparticles are advantageous to sustain reversible conversion reactions in sodium ion and lithium ion batteries. FeS 2 is particularly attractive for energy storage technology due to its earth abundance, low toxicity, and low raw material cost. …

Li-ion 150
article thumbnail

Antimony nanocrystals as high-capacity anode materials for both Li-ion and Na-ion batteries

Green Car Congress

The nanocrystals possess high and similar Li-ion and Na-ion charge storage capacities of 580?640 85% of the low-rate value, indicating that rate capability of Sb nanostructures can be comparable to the best Li-ion intercalation anodes and is so far unprecedented for Na-ion storage. 640 mAh g ?1

Li-ion 220