This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Solid-state sodium-ion battery company LiNa Energy ( earlier post ) successfully completed an independent demonstration of its lithium-free sodium batteries for energystorage systems with commercial partner ion Ventures.
ion Ventures, a modern utility and energystorage infrastructure specialist, and LiNa Energy , a solid-state battery technology developer, concluded their first successful trial of LiNa’s proprietary solid-state sodium-nickel battery platform at an undisclosed location in South East England last week.
the leader in sodium-ion (Na-ion) battery technology, has received its first order from ICM Australia for high-energysodium-ion batteries for use in the Australian market. Unlike lithium-ion batteries, Faradion’s sodium-ion batteries have exceptional thermal stability and safety. UK-based Faradion Ltd.,
Contemporary Amperex Technology Co., CATL) unveiled its first-generation sodium-ion battery, together with its AB battery pack solution—which is able to integrate sodium-ion cells and lithium-ion cells into one pack. This has become a bottleneck for the industrialization of sodium-ion batteries.
Natron Energy, a manufacturer of sodium-ion batteries, and Clarios International Inc., a manufacturer of low-voltage advanced battery technologies for mobility, will collaborate to manufacture the first mass-produced sodium-ion batteries. In 2021, Natron released the world’s first UL-listed sodium-ion battery product.
a leader in non-aqueous sodium-ion battery technolog ( earlier post ), announced a collaboration which combines Faradion’s IP with AMTE Power’s design and manufacturing capabilities. Faradion’s patented technology is highly scalable as it can leverage AMTE Power’s existing lithium-ion manufacturing facilities in Thurso.
One of the more promising candidates for batteries beyond the current standard of lithium-ion materials is the sodium-ion (Na-ion) battery. Na-ion is particularly attractive because of the greater abundance and lower cost of sodium compared with lithium. This research was supported by DOE’s Vehicle Technologies Office.
Cheap and abundant, sodium is a promising candidate for new battery technology. However, the limited performance of sodium-ion batteries has hindered large-scale application. A paper on the work appears in Nature Energy. V—higher than most sodium-ion batteries previously reported. —Jin et al.
The US Department of Energy’s Advanced Research Projects Agency-Energy (ARPA-E) has selected 19 new projects to receive a total of $43 million to develop breakthrough energystoragetechnologies and support promising small businesses. Advanced Management And Protection Of Energy-Storage Devices (AMPED).
Xcel Energy has released the preliminary results from its wind-to-battery (W2B) storage project in Minnesota, and termed the technology successful. We have proved that this technology can perform the functions of storage that we were looking for to help us manage the variability of wind energy on our operating system.
The New York State Energy Research and Development Authority (NYSERDA) has awarded $250,000 to each of eight companies and research centers to develop working prototypes for a wide range of energy-storagetechnologies. The recipients are all members of the NY Battery and EnergyStorageTechnology ( NY-BEST ) Consortium.
A paper on their work is published in the journal, ACS Energy Letters. Sodium-ion batteries (SIBs), with the intrinsic advantages of resource abundance and geographic uniformity, are desired alternative battery technology to Li-ion batteries (LIBs) for grid-scale energystorage and transportation applications.
GE EnergyStorageTechnologies, a unit of GE Transportation, introduced its Durathon sodium-metal halide battery ( earlier post ) for critical backup power. Sodium-metal halide cell basic chemistry. GE is also using the technology to develop advanced transportation energystorage systems.
The US Department of Energy is awarding $620 million for projects around the country to demonstrate advanced Smart Grid technologies and integrated systems. The selected projects include advanced battery systems (including flow batteries), flywheels, and compressed air energy systems.
Researchers led by the Department of Energy’s Pacific Northwest National Laboratory (PNNL) have extended the capacity and duration of sodium-aluminum batteries. The new sodium-based molten salt battery uses two distinct reactions. of peak charge capacity. mAh cm −2 , a discharge duration of 28.2 —Weller et al.
Tests conducted by Titirici Group , a multidisciplinary research team based at Imperial College London, have found that a novel carbon nanotube electrode material derived from CO 2 —produced by Estonian nanotech company UP Catalyst ( earlier post )—enhances the cyclability of sodium-ion batteries.
A plot of ESOI for 7 potential grid-scale energystoragetechnologies. Benson from Stanford University and Stanford’s Global Climate and Energy Project (GCEP) has quantified the energetic costs of 7 different grid-scale energystoragetechnologies over time. Credit: Barnhart and Benson, 2013.
The New York State Energy Research and Development Authority (NYSERDA) will award $8 million to help develop or commercialize 19 advanced energystorage projects. Funding will support projects in two categories: Industry-led near-term commercialization partnerships (two major awards), and technology development.
GE’s EnergyStorage business announced $63 million in new Durathon sodium-halide battery orders since the business launched in July. The technology is unique because it can function in a variety of extreme conditions and store as much energy as lead-acid batteries twice its size while lasting up to 10 times as long.
Overview of the three vehicle classes identified in the study, and their corresponding battery technologies. In any automotive application, regulatory decisions to phase out established battery technologies would impact negatively on overall vehicle performance and cost, according to the report. Click to enlarge.
The hybrid systems research team at GE Global Research has successfully demonstrated a dual battery system for an electric transit bus, pairing a high-energy density sodium metal halide battery with a high-power lithium battery. Most types of batteries today come with a trade-off between power and energystorage.
Researchers in South Korea have developed a novel high-energy cathode material, Na 1.5 F 0.7 , for sodium-ion (Na-ion) batteries (NIBs). This new material provides an energy density of 600 Wh kg –1 , the highest value among Na-ion cathodes. Ragone plot for the new Na 1.5 cathode and other cathode materials for NIBs.
Researchers at Pacific Northwest National Laboratory (PNNL) have devised an alloying strategy that enables sodium-beta batteries to operate at significantly lower temperatures. The new electrode enables sodium-beta batteries to last longer, helps streamline their manufacturing process and reduces the risk of accidental fire.
EaglePicher Technologies, LLC, (EPT), an OM Group, Inc. EaglePicher Technologies, LLC, (EPT), an OM Group, Inc. Overview of the original EPT/PNNL project on planar sodium batteries. Battery models and market studies conducted for the project have shown that the new concept should meet multiple needs of the grid storage market.
John Goodenough, are proposing a strategy for high-capacity next-generation alkali (lithium or sodium)-ion batteries using water-soluble redox couples as the cathode. The cell operates without a catalyst and has high storage efficiency. The present sodium-sulfur battery operates above 300 °C. V and charges at 4.2-4.4
Natron Energy, a developer of new battery cell technology based on Prussian Blue analogue electrodes and a sodium-ion electrolyte, has ( earlier post ), has been awarded a $3-million grant by the California Energy Commission (CEC) for “Advanced EnergyStorage for Electric Vehicle Charging Support.”
Installed revenue by ess for ancillary services by technology, world markets: 2011-2021. Such short-duration energystorage systems may be utilized for ancillary services including frequency regulation, spinning reserves, voltage control, and load following, among others. Click to enlarge.
A team led by researchers from the Karlsruhe Institute of Technology (KIT) in Germany is proposing a new class of high entropy materials for energystorage applications. Additionally, this approach enables the reduction of toxic and costly elements in battery cathodes, without significantly affecting the energy density.
The new projects in four focus areas join the existing Faraday Institution research projects that collectively aim to deliver the organisation’s mission to accelerate breakthroughs in energystoragetechnologies to benefit the UK in the global race to electrification. Next generation sodium ion batteries–NEXGENNA.
Schematic of a sodium-nickel chloride cell with planar design. A planar (flat) sodium-nickel chloride battery could deliver 30% more power at lower temperatures than the typical cylindrical design, according to researchers at the US Department of Energy’s Pacific Northwest National Laboratory (PNNL). Click to enlarge.
Researchers at Chalmers University of Technology, Sweden, have developed a nanometric graphite-like anode for sodium ion (Na + storage), formed by stacked graphene sheets functionalized only on one side, termed Janus graphene. The estimated sodiumstorage up to C 6.9 100 to 150 mA h g ? 100 to 150 mA h g ?1
GE Chairman and CEO Jeff Immelt shows a sodium-metal halide battery cell at the press conference announcing the battery plant. GE says the planned facility will produce approximately 10 million sodium-metal halide cells each year—equivalent to 900 MWh of energystorage, or enough to support 1,000 GE hybrid locomotives.
According to a new report from Pike Research, worldwide installed revenues for stationary energystorage systems for the electricity grid will grow at a strong pace in the coming decade, increasing from $1.5 Worldwide installed revenue opportunity by energystorage on the grid (ESG) technology, 2010-2020.
Installed revenue by ESG technology, worldwide. In its new report EnergyStorage on the Grid (ESG), Pike Research forecasts that global spending in the ESG market will reach a little over $22 billion over the next 10 years. Technology costs. Energystorage on the grid is reaching a turning point.
Classification of potential electrical storage for stationary applications. In addition to outlining requirements for ESS and general guidelines for investigating technologies, the paper by Yang et al., In addition to outlining requirements for ESS and general guidelines for investigating technologies, the paper by Yang et al.,
The US Department of Energy’s National EnergyTechnology Laboratory (NETL) is conducting research on alternative options to reduce costs and make large-scale energystorage safer and more practical. Innovative fabrication methods can also lead to significant energystorage system improvements.
Natron Energy , a developer of new battery cell technology based on Prussian Blue analogue electrodes and a sodium-ion electrolyte, has closed a strategic investment by Chevron Technology Ventures (CTV) to support the development of stationary energystorage systems for demand charge management at electric vehicle (EV) charging stations.
Solid-state sodium battery company LiNa Energy ( earlier post ) has closed out a £3.5-million LiNa Energy, a spin-out from Lancaster University, established in 2017, is commercializing a safe, cobalt- and lithium-free solid-state sodium battery. To date LiNa Energy has secured more than £7 million (US$9.5
Of the eleven competing energystoragetechnologies analyzed in a recent report from Pike Research, the cleantech industry analyst firm forecasts that Li-ion batteries will be the fastest growing category for the Stationary Utility EnergyStorage (SUES) sector, growing to a $1.1 billion worldwide business by 2018.
Building on earlier work, researchers in China have fabricated a hierarchical metal-organic nanocomposite for use as a cathode in sodium-ion batteries (SIBs). 2017) “In-Situ Formed Hierarchical Metal-Organic Flexible Cathode for High-EnergySodium-Ion Batteries” ChemSusChem doi: 10.1002/cssc.201701484. and Huang, Y.
British battery R&D company Faradion has demonstrated a proof-of-concept electric bike powered by sodium-ion batteries at the headquarters of Williams Advanced Engineering, which collaborated in the development of the bike. Sodium-ion intercalation batteries—i.e., Oxford University was also a partner. Earlier post.)
Australia-based Sparc Technologies has entered into a strategic partnership agreement with the Queensland University of Technology (QUT). We will be targeting the production of materials for the high growth market of sodium-ion batteries which is displaying significant promise as an alternative to lithium-ion batteries.
Stanford researchers have developed a sodium-ion battery (SIB) that can store the same amount of energy as a state-of-the-art lithium ion, at substantially lower cost. Thus, further research is required to find better sodium host materials. Thus, further research is required to find better sodium host materials.
Friedrich Schiller University Jena (FSU) and the Fraunhofer Institute for Ceramic Technologies and Systems Hermsdorf / (IKTS) are launching the new Center for Energy and Environmental Chemistry (CEEC) at Jena in Germany.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content