Remove Energy Storage Remove Sodium Remove Supplies Remove Water
article thumbnail

Energy storage: the key to a decarbonised future

Setec Powerr

We are transitioning from fossil fuels to renewable energy sources such as wind and solar, and the use of energy storage is becoming more widespread. And with the popularity of electric vehicles, the grid is under more and more pressure, so the demand for energy storage is growing. Battery storage.

article thumbnail

Stanford study quantifies energetic costs of grid-scale energy storage over time; current batteries the worst performers; the need to improve cycle life by 3-10x

Green Car Congress

A plot of ESOI for 7 potential grid-scale energy storage technologies. Benson from Stanford University and Stanford’s Global Climate and Energy Project (GCEP) has quantified the energetic costs of 7 different grid-scale energy storage technologies over time. Credit: Barnhart and Benson, 2013. Click to enlarge.

article thumbnail

DOE Awarding $620M for Smart Grid Demonstration and Energy Storage Projects

Green Car Congress

The US Department of Energy is awarding $620 million for projects around the country to demonstrate advanced Smart Grid technologies and integrated systems. The selected projects include advanced battery systems (including flow batteries), flywheels, and compressed air energy systems. Los Angeles Department of Water and Power.

article thumbnail

Researchers develop rechargeable hybrid-seawater fuel cell; highly energy density, stable cycling

Green Car Congress

The circulating seawater in the open-cathode system results in a continuous supply of sodium ions, endowing the system with superior cycling stability that allows the application of various alternative anodes to sodium metal by compensating for irreversible charge losses. an alloying material), in full sodium-ion configuration.

Recharge 285
article thumbnail

Wuhan team develops new electrochemical cell for efficient, pollution-free extraction of lithium from salt lake brines

Green Car Congress

Researchers at Wuhan University in China have developed a new electrochemical cell, PANI/Li x Mn 2 O 4 , for selective recovery of Li + ions from brine water with high impurity cations (K + , Na + , Mg 2+ , etc). free technology for Li + extraction from brine waters. A paper on their work is published in the journal ChemSusChem.

Li-ion 220
article thumbnail

CMU study concludes lithium market fluctuations unlikely to impact Li-ion battery prices significantly

Green Car Congress

Some investors believe that inexpensive lithium is one key to reducing device and system costs, while others believe that increased demand will draw geopolitical and economic concerns about access to supply on par with current concerns about oil. If prices do quadruple, it becomes, in principle, economical to extract lithium from sea water.

Li-ion 150
article thumbnail

ORNL advancing LDH sorbent to recover lithium from geothermal brine wastes

Green Car Congress

These plants pump hot water from geothermal deposits and use it to generate electricity. The LDH sorbent is made up of layers of the materials, separated by water molecules and hydroxide ions that create space, allowing lithium chloride to enter more readily than other ions such as sodium and potassium.

Waste 314