Remove Carbon Remove Commercial Remove Recharge Remove Sodium
article thumbnail

ARPA-E awards $42M to 12 projects for advanced EV batteries; EVs4ALL program

Green Car Congress

Projects selected for the Electric Vehicles for American Low-Carbon Living (EVs4ALL) program ( earlier post ) aim to expand domestic EV adoption by developing batteries that last longer, charge faster, perform efficiently in freezing temperatures and have better overall range retention. Award amount: $3,198,085). Award amount: $3,425,000).

Li-ion 256
article thumbnail

EV Guru: Sodium-Ion Batteries are Coming Sooner Than You think!

Plug In India

Video: EV Guru: Sodium-Ion Batteries are Coming Sooner Than You think! The mining industry cannot keep up with the demand, so the alternative is to manufacture batteries based on sodium chemistry. The big issue with sodium-ion batteries is that they can store only about two-thirds of the energy of Li-ion batteries of equivalent size.

Sodium 59
article thumbnail

Univ. of Texas researchers propose lithium- or sodium-water batteries as next generation of high-capacity battery technology; applicable for EVs and grid storage

Green Car Congress

Example of a lithium-water rechargeable battery. Researchers at the University of Texas, including Dr. John Goodenough, are proposing a strategy for high-capacity next-generation alkali (lithium or sodium)-ion batteries using water-soluble redox couples as the cathode. The present sodium-sulfur battery operates above 300 °C.

Sodium 218
article thumbnail

Goodenough and UT team report new strategy for all-solid-state Na or Li battery suitable for EVs; plating cathodes

Green Car Congress

lithium, sodium or potassium) on a copper–carbon cathode current collector at a voltage of more than 3.0 Traditional rechargeable batteries use a liquid electrolyte and an oxide as a cathode host into which the working cation of the electrolyte is inserted reversibly over a finite solid-solution range.

Li-ion 150
article thumbnail

ANL team develops new class of Li- and Na- rechargeable batteries based on selenium and selenium-sulfur; greater volumetric energy densities than sulfur-based batteries

Green Car Congress

Researchers at Argonne National Laboratory have developed selenium and selenium–sulfur (Se x S y )-based cathode materials for a new class of room-temperature lithium and sodium batteries. systems suffer from cycling performance issues that impede their commercial applications: Li/O 2. Click to enlarge. V) without failure. S y systems.

Recharge 220
article thumbnail

New high-performance Na-ion battery with SO2-based catholyte; potential for other non-Li-metal-based battery systems

Green Car Congress

Researchers in South Korea have demonstrated new type of room-temperature and high-energy density sodium rechargeable battery using a sulfur dioxide (SO 2 )-based inorganic molten complex catholyte that serves as both a Na + -conducting medium and cathode material (i.e. catholyte). mA cm −2 ). —Jeong et al. mA cm −2 ).

Li-ion 150
article thumbnail

Antimony nanocrystals as high-capacity anode materials for both Li-ion and Na-ion batteries

Green Car Congress

One molar LiPF6 in ethylene carbonate/dimethyl carbonate mixture containing 3 wt % of FEC was used as electrolyte for Li-ion cells, whereas 1 M NaClO 4 in propylene carbonate containing 10 wt % of FEC was used for Na-ion batteries. 20C (1C = 0.66 1 , 9 cycles at each C-rate, first cycle at 0.1C). V potential range.

Li-ion 220