Remove Powered Remove Recharge Remove Sodium Remove Universal
article thumbnail

ARPA-E awards $42M to 12 projects for advanced EV batteries; EVs4ALL program

Green Car Congress

The US Department of Energy (DOE) will award $42 million to 12 projects to strengthen the domestic supply chain for advanced batteries that power electric vehicles (EVs). Solid Power Operating will develop a 3D-structured Li metal anode and novel sulfur (S) composite cathode to enable high-energy and fast-charging EV battery cells.

Li-ion 256
article thumbnail

Stanford team develops sodium-ion battery with performance equivalent to Li-ion, but at much lower cost

Green Car Congress

Stanford researchers have developed a sodium-ion battery (SIB) that can store the same amount of energy as a state-of-the-art lithium ion, at substantially lower cost. The rise of renewable solar and wind power is demanding sustainable storage technologies using components that are inexpensive, Earth-abundant and environmental friendly.

Sodium 186
article thumbnail

Faradion demonstrates proof-of-concept sodium-ion electric bike

Green Car Congress

E-bike powered by Faradion prototype Na-ion battery pack. British battery R&D company Faradion has demonstrated a proof-of-concept electric bike powered by sodium-ion batteries at the headquarters of Williams Advanced Engineering, which collaborated in the development of the bike. Oxford University was also a partner.

Sodium 150
article thumbnail

Researchers significantly improve H2 storage properties of sodium aluminium hydride by doping with 2D titanium carbide

Green Car Congress

A team at Zhejiang University in China has significantly enhanced the hydrogen storage properties of sodium aluminum hydride (NaAlH 4 ) by doping it with a 2D titanium carbide (Ti 3 C2) MXene. 2016.07.095.

Sodium 150
article thumbnail

UT Austin team devises new strategy for safe, low-cost, all-solid-state rechargeable Na or Li batteries suited for EVs

Green Car Congress

Researchers at the University of Texas at Austin, including Prof. With this glass, a rechargeable battery with a metallic lithium or sodium anode and an insertion-compound as cathode may require a polymer or liquid catholyte in contact with the cathode. eV, which promises to offer acceptable operation at lower temperatures.

Low Cost 150
article thumbnail

U Waterloo team identifies key reaction in sodium-air batteries; implications for improving Li-air

Green Car Congress

Chemists at the University of Waterloo have identified the key reaction that takes place in sodium-air batteries. Understanding how sodium-oxygen batteries work has implications for developing the more powerful lithium-oxygen battery, which has been proposed by some as the “holy grail” of electrochemical energy storage.

Sodium 150
article thumbnail

SiGNa Chemistry Demonstrates Sodium Silicate-Based Hydrogen Generation System for Portable Fuel Cells

Green Car Congress

Prototype sodium silicate hydrogen generation system as presented earlier this year at DOE merit review. The H300 utilizes real-time swappable cartridges that generate hydrogen on demand using SiGNa’s proprietary sodium silicide (NaSi) powder. Sodium-Silica-Gel: 2Na-SG + H 2 O → H 2 + Na 2 Si 2 O 5. Click to enlarge.

Sodium 230