article thumbnail

IIT, Argonne team designs Li2O-based Li-air battery with solid electrolyte; four-electron reaction for higher energy density

Green Car Congress

Researchers at the Illinois Institute of Technology (IIT) and US Department of Energy’s (DOE) Argonne National Laboratory have developed a lithium-air battery with a solid electrolyte. The battery is rechargeable for 1000 cycles with a low polarization gap and can operate at high rates. —Kondori et al.

Li-ion 418
article thumbnail

NIMS researchers report 500 Wh/kg+ Li-air battery

Green Car Congress

Researchers at Japan’s National Institute for Materials Science (NIMS) and the NIMS-SoftBank Advanced Technologies Development Center have developed a lithium-air battery with an energy density of more than 500 Wh/kg—significantly higher than currently lithium ion batteries.

article thumbnail

Researchers Develop Solid-State, Rechargeable Lithium-Air Battery; Potential to Exceed 1,000 Wh/kg

Green Car Congress

Sample UDRI solid-state, rechargeable lithium-air batteries, and Dr. Binod Kumar. Engineers at the University of Dayton Research Institute (UDRI) have developed a solid-state, rechargeable lithium-air battery. It was subjected to 40 charge–discharge cycles at current densities ranging from 0.05

article thumbnail

Researchers directly visualize formation and disappearance of Li-O2 reaction products; insights to support development of rechargeable lithium-air batteries

Green Car Congress

During discharge, Li ions meet with reduced oxygen on the surface of the Li x V 2 O 5 electrode forming Li 2 O 2 , which is decomposed upon recharge. The rechargeable Li?air This is in contrast to Li 2 O 2 particles having sizes in the range of 100 to 1000 nm formed in Li-O 2 batteries with aprotic electrolytes.

article thumbnail

OSU team demonstrates concept of potassium-air battery as alternative to lithium-air systems

Green Car Congress

V), which contributes to the low rechargeability. Potassium, an alkali metal similar to lithium (and sodium) can be used in a rechargeable battery. They determined that the oxidation process can be complete within the potential range where the carbon electrode and the electrolyte are relatively stable. O 2 batteries.In

article thumbnail

Researchers present lower temperature version of ultra-high capacity molten air battery

Green Car Congress

Last year, researchers at George Washington University led by Dr. Stuart Licht introduced the principles of a new class rechargeable molten air batteries that offer amongst the highest intrinsic electric energy storage capabilities. The iron molten air battery; illustration of the charge/discharge in molten carbonate.

Batteries 231
article thumbnail

What’s Happening in EV Battery Technology

Driivz

It will charge in minutes, provide longer driving distance to overcome range anxiety , last indefinitely, be safe to operate — and accelerate widespread EV adoption. Is the vision possible? The ideal battery will be made of low-cost, plentiful materials that are lightweight and flexible enough to allow vehicle design innovations.