article thumbnail

Rechargeable ultrahigh-capacity tellurium-aluminum batteries

Green Car Congress

Researchers at the University of Science and Technology Beijing, with colleagues at Beijing Institute of Technology, have demonstrated the potential of rechargeable tellurium (Te) nanowire positive electrodes to construct ultrahigh-capacity rechargeable tellurium-aluminum batteries (TABs). A g -1 ) along with an initial 1.4

Recharge 261
article thumbnail

New prototype rechargeable lithium-nitrogen battery

Green Car Congress

a rechargeable lithium-nitrogen (Li-N–) battery with the proposed reversible reaction of 6Li + N– ⇋ 2Li–N. The assembled N– fixation battery system, consisting of a Li anode, ether-based electrolyte, and a carbon cloth cathode, shows a promising electrochemical faradic efficiency (59%). Now, researchers in China have developed.

Recharge 225
article thumbnail

NTU Singapore team develops ultra-fast charging Li-ion battery with new TiO2 gel anode material

Green Car Congress

Researchers from Nanyang Technological University (NTU Singapore) led by Professor Xiaodong Chen have developed a new TiO 2 gel material for Li-ion battery anodes. A battery equipped with the new anode material can be recharged up to 70% in only 2 minutes. A paper on their work is published in the journal Advanced Materials.

Li-ion 290
article thumbnail

Ningbo researchers propose mixed-ion Li/Na batteries

Green Car Congress

Schematics of Li + /Na + mixed-ion battery. During charging (or discharging), the storage (or release) of Li + takes place at anode, and the release (or storage) of Na + occurs at cathode. However, a number of issues remain before SIBs could become commercially competitive with Li-ion batteries (LIBs). Chen et al.

Li-ion 170
article thumbnail

ANL researchers report photo-excitation can speed up Li-ion charging by factor of two

Green Car Congress

Researchers at the US Department of Energy’s (DOE) Argonne National Laboratory have reported that a new photo-excitation mechanism can speed up the charging of lithium-ion batteries by a factor of two or more. A serious limitation [of lithium-ion batteries], however, is the slow charging rate used to obtain the full capacity.

Li-ion 305
article thumbnail

Nano-vault architecture alleviates stress in Si-based anodes for Li-ion batteries

Green Car Congress

New research conducted by the Okinawa Institute of Science and Technology Graduate University (OIST) has identified a specific building block that improves the anode in lithium-ion batteries. GPa) is ascribed to arch action, a well-known civil engineering concept. The resulting maximisation of measured elastic modulus (~120?GPa)

Li-ion 243
article thumbnail

KIT researchers develop fluoride-ion batteries; potential for much higher energy densities than conventional Li-ion batteries

Green Car Congress

Setup of the fluoride-ion battery: A fluoride-containing electrolyte separates the metal anode from the metal fluoride cathode. rechargeable) battery cells based on a fluoride shuttle. Metal fluorides may be applied as conversion materials in lithium-ion batteries. In the search for new concepts to build batteries with high.

Li-ion 285