Remove Carbon Remove Sodium Remove Store Remove Study
article thumbnail

Chalmers team develops graphite-like anode for Na-ion batteries; Janus graphene

Green Car Congress

Researchers at Chalmers University of Technology, Sweden, have developed a nanometric graphite-like anode for sodium ion (Na + storage), formed by stacked graphene sheets functionalized only on one side, termed Janus graphene. The estimated sodium storage up to C 6.9 Na is comparable to graphite for standard lithium ion batteries.

Sodium 493
article thumbnail

Researchers develop rechargeable hybrid-seawater fuel cell; highly energy density, stable cycling

Green Car Congress

The circulating seawater in the open-cathode system results in a continuous supply of sodium ions, endowing the system with superior cycling stability that allows the application of various alternative anodes to sodium metal by compensating for irreversible charge losses. an alloying material), in full sodium-ion configuration.

Recharge 285
article thumbnail

Industry study finds lead-acid to remain most wide-spread automotive energy storage for foreseeable future; new chemistries continue to grow

Green Car Congress

Overview of the three vehicle classes identified in the study, and their corresponding battery technologies. Hybrid vehicles , including advanced micro-hybrid, mild-hybrid and full-hybrid vehicles rely on the battery to play a more active role, with the energy stored from braking used to boost the vehicle’s acceleration.

Lead Acid 304
article thumbnail

ARPA-E awarding $39M to 16 projects to grow the domestic critical minerals supply chain

Green Car Congress

RECLAIM: Electrochemical Lithium and Nickel Extraction with Concurrent Carbon Dioxide Mineralization ($2,999,997). Olivine is a CO 2 -reactive waste product that can be returned as tailings after capture carbon from the air. Harvard University. Harvard will expand the productive fields for CO 2 injection and enhanced mining by 100%.

Supplies 345
article thumbnail

Univ. of Texas researchers propose lithium- or sodium-water batteries as next generation of high-capacity battery technology; applicable for EVs and grid storage

Green Car Congress

John Goodenough, are proposing a strategy for high-capacity next-generation alkali (lithium or sodium)-ion batteries using water-soluble redox couples as the cathode. The present sodium-sulfur battery operates above 300 °C. The high energy storage has stimulated a worldwide study of Li-air batteries. V and charges at 4.2-4.4

Sodium 218
article thumbnail

Fraunhofer develops new dry-coating process for battery electrodes

Green Car Congress

Prognos AG carried out a corresponding study on behalf of the ministry. This coating contains the active components that are responsible for storing energy. The active material, conductive carbon and binders are dispersed in a solvent to make a paste, which is initially applied to the metal foil to form a wet coating.

Batteries 300
article thumbnail

Antimony nanocrystals as high-capacity anode materials for both Li-ion and Na-ion batteries

Green Car Congress

One molar LiPF6 in ethylene carbonate/dimethyl carbonate mixture containing 3 wt % of FEC was used as electrolyte for Li-ion cells, whereas 1 M NaClO 4 in propylene carbonate containing 10 wt % of FEC was used for Na-ion batteries. 20C (1C = 0.66 1 , 9 cycles at each C-rate, first cycle at 0.1C). V potential range.

Li-ion 220