Remove Carbon Remove Low Cost Remove Texas Remove Water
article thumbnail

Researchers use melamine to create effective, low-cost carbon capture; potential tailpipe application

Green Car Congress

Using an inexpensive polymer called melamine, researchers from UC Berkeley, Texas A&M and Stanford have created a cheap, easy and energy-efficient way to capture carbon dioxide from smokestacks. We distinguished ammonium carbamate pairs and a mix of ammonium carbamate and carbamic acid during carbon dioxide chemisorption.

Low Cost 243
article thumbnail

Nacero selects Topsoe’s TIGAS technology for gas-to-gasoline unit; reducing lifecycle carbon footprint up to 50%

Green Car Congress

Nacero has licensed Topsoe TIGAS (Topsoe Improved Gasoline Synthesis) technology for its multi-billion USD natural-gas-to-gasoline facility in Penwell, Texas to produce 100,000 barrels per day of gasoline component ready for blending into US commercial grades. Nacero’s Pemwell-facility in Houston, Texas.

Gasoline 221
article thumbnail

UH team develops fast, cost-efficient method to grow OER catalyst for seawater splitting

Green Car Congress

A team of researchers led by Zhifeng Ren, director of the Texas Center for Superconductivity at the University of Houston, has developed an oxygen-evolving catalyst that takes just minutes to grow at room temperature on commercially available nickel foam. That requires substantial amounts of energy and drives up the cost.

Hydrogen 284
article thumbnail

Univ. of Texas researchers propose lithium- or sodium-water batteries as next generation of high-capacity battery technology; applicable for EVs and grid storage

Green Car Congress

Example of a lithium-water rechargeable battery. Researchers at the University of Texas, including Dr. John Goodenough, are proposing a strategy for high-capacity next-generation alkali (lithium or sodium)-ion batteries using water-soluble redox couples as the cathode. In theory, the decomposition potential of water is 4.27

Sodium 218
article thumbnail

ARPA-E Selects 37 Projects for $106M in Funding in Second Round; Electrofuels, Better Batteries and Carbon Capture

Green Car Congress

ARPA-E’s first solicitation awarded $151 million to 37 projects aimed at transformational innovations in energy storage, biofuels, carbon capture, renewable power, building efficiency, vehicles, and other areas. Novel Biological Conversion of Hydrogen and Carbon Dioxide Directly into Biodiesel. Water will be the primary byproduct.

Carbon 249
article thumbnail

DOE awards $35M to 12 ARPA-E projects to reduce methane emissions; 5 on natural gas engines

Green Car Congress

Typical MOCs have diminished methane conversion efficiency at low temperatures, limiting their synergies with ultra-lean burn NG engines. The proposed MOC will use a hydrothermally stable formulation to promote high conversion efficiencies in low-temperature and high-water concentration environments.(Selection

Gas 186
article thumbnail

GWU team demonstrates one-pot process for optimized synthesis of controlled CNTs from CO2; coupling cement and C2CNT

Green Car Congress

Stuart Licht ( earlier post ) have developed a new process that transforms CO 2 into a controlled selection of nanotubes (CNTs) via molten electrolysis; they call the process C2CNT (CO2 into carbon nanotubes). This synthesis consumes only CO 2 and electricity, and is constrained only by the cost of electricity. —Ren et al.

CO2 150